Preliminary Exam in Analysis 4/29/14 Identification number:

20 points per question.
The best six questions will count.

Question 1

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by the formulas:

$$
\begin{gathered}
f(0,0)=0 \\
f(x, y)=\frac{(x+y)^{3}}{x^{2}+y^{2}}, \text { for any }(x, y) \in \mathbb{R}^{2}, \text { with }(x, y) \neq(0,0)
\end{gathered}
$$

Prove that f is everywhere Lipschitz, but not everywhere differentiable.

Question 2

Prove the identity, valid for any real x, with $|x|<1$:

$$
\frac{x}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k} .
$$

Now let $f:(-3,3) \rightarrow \mathbb{R}$ be given by the series, valid for any real x with $|x|<3$:

$$
f(x)=\sum_{k=1}^{\infty}\left(\frac{x}{(-1)^{k}+4}\right)^{k}
$$

Prove that $\left|f^{\prime}(x)\right| \leq \frac{3}{(3-x)^{2}}$, for any real number x, such that $0 \leq x<3$.

Question 3

Show that $[0,1]$ can not be written as a countably infinite union of disjoint closed intervals.

Question 4

Let $f(x, y)=(x-y, x y)$, for any (x, y) in \mathbb{R}^{2}, with $x>0$ and $y>0$.
Show that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is bijective onto its image and has a smooth inverse.
Also identify the image of f and determine the Jacobian matrix of the inverse function.

Question 5

Let $f_{n}(x)=e^{-n x}\left(1+\frac{x}{n}\right)^{n^{2}}$, defined for any real x and for any $n \in \mathbb{N}$.

- Prove that there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$, with $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$, for each real number x and determine this function explicitly.
- Is the convergence of $f_{n}(x)$ to $f(x)$ uniform? Discuss.

Question 6

Let $\mathcal{F}=\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R} ; n \in \mathbb{N}\right\}$ be a sequence of \mathcal{C}^{1} functions satisfying the conditions, for each $n \in \mathbb{N}$:

- $f_{n}(0)=0$,
- $\left|f_{n}^{\prime}(x)\right|<\frac{n^{2}+x^{4}}{n^{2}+x^{2}}$, for all $x \in \mathbb{R}$.

Show that there is a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a subsequence $\mathcal{G}=\left\{f_{n_{k}}: k \in \mathbb{N}\right\}$ of \mathcal{F}, such that for each $x \in \mathbb{R}$:

$$
\lim _{k \rightarrow \infty} f_{n_{k}}(x)=f(x)
$$

Also prove that the convergence of the subsequence \mathcal{G} to its limit is uniform on compact subsets of the reals.

Question 7

For n a positive integer, let $u: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R}$ be a \mathcal{C}^{2} function.
Suppose that u depends only on the variable $r=\sqrt{\underline{x} \cdot \underline{x}}$ and that u is bounded on its domain.
Finally suppose also that u is harmonic: $\underline{\nabla} \cdot \underline{\nabla} u=0$.
Prove that u is constant.

Question 8

Let (\mathbb{X}, d) be a metric space.
Denote by $(\mathcal{C}(\mathbb{X}), D)$ the metric space of continuous bounded real-valued functions on \mathbb{X}, equipped with the metric $D(f, g)=\sup _{x \in \mathbb{X}}(|f(x)-g(x)|)$, for any f and g in $\mathcal{C}(\mathbb{X})$.
Denote by a a fixed point of \mathbb{X}.
For each fixed $y \in \mathbb{X}$ define $f_{y}(x)=d(x, y)-d(x, a)$, for any $x \in \mathbb{X}$.
Prove that $f_{y} \in \mathcal{C}(\mathbb{X})$ and that the map $C: \mathbb{X} \rightarrow \mathcal{C}(\mathbb{X}), y \rightarrow C(y)=f_{y}$, defined for any $y \in \mathbb{X}$ is an isometry of \mathbb{X} into $\mathcal{C}(\mathbb{X})$.
Is the image of the map C closed? Discuss.

