Preliminary Exam in Analysis, August 2019

Problem 1. Let $F : \mathbb{R}^n \to \mathbb{R}$ be a norm, that is for all $x, y \in \mathbb{R}^n$ and all $t \in \mathbb{R}$ we have

- (1) $F(x) \ge 0$ and F(x) = 0 if and only if x = 0,
- (2) $F(x+y) \le F(x) + F(y)$,
- (3) F(tx) = |t|F(x).

Prove the following statements:

- (a) F is bounded on the unit sphere.
- (b) F is continuous.
- (c) There are constants A, B > 0 such that $A||x|| \le F(x) \le B||x||$, for all $x \in \mathbb{R}^n$.

Hint. It is useful to represent $v \in \mathbb{R}^n$ in a standard basis. For part (c) think what happens on the unit sphere.

Problem 2. Prove that if the partial derivatives $\partial f/\partial x_1$ and $\partial f/\partial x_2$ of a function $f : \mathbb{R}^2 \to \mathbb{R}$ exist at every point of \mathbb{R}^2 , and the partial derivative $\partial f/\partial x_1$ is continuous on \mathbb{R}^2 , then f is differentiable at every point of \mathbb{R}^2 .

Problem 3. Let S be the subset of $\mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$, $n \geq 2$, consisting of vectors (v_1, v_2) such that $||v_1|| = ||v_2|| = 1$ and $v_1 \cdot v_2 = 0$. Prove that S is a smooth k-dimensional surface in \mathbb{R}^{2n} for some $1 \leq k < 2n$. That is, in a neighborhood of any point of S, the set S is a graph of a smooth function of k-variables. Find the dimension k of S.

Problem 4. Assume that $f : [0,1] \to [0,1]$ is a continuous function such that the set $\{x \in [0,1] : f(x) = 1\}$ has measure zero. Prove directly (without using any results like monotone or dominated convergence theorem) that

$$\lim_{n \to \infty} \int_0^1 f(x)^n \, dx = 0 \, .$$

Problem 5. Prove that:

(a) There is a unique continuous function $f:[0,1] \to \mathbb{R}$ such that

$$f(x) = 1 + \int_0^x t^2 f(t) dt$$
 for all $x \in [0, 1]$.

(b) The function from (a) is of class $f \in C^{\infty}(0, 1)$.

Problem 6. Suppose that $K \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$ and

$$K(x) = \frac{K(x/||x||)}{||x||} \quad \text{for all } x \in \mathbb{R}^2 \setminus \{0\}.$$

- (a) Prove that $\nabla K(tx) = t^{-2} \nabla K(x)$ for $x \neq 0$ and t > 0.
- (b) Use the divergence theorem to prove that (on both sides we integrate vector valued functions)

$$\int_{\{1 \le \|x\| \le 2019\}} \nabla K(x) \, dx = \int_{\partial \{1 \le \|x\| \le 2019\}} K(x) \vec{\mathbf{n}}(x) \, d\sigma(x).$$

(c) Prove that

$$\int_{\{1 \le \|x\| \le 2019\}} \nabla K(x) \, dx = 0.$$

Hint. Show first that $K(tx) = t^{-1}K(x)$ for $x \neq 0$, t > 0. In (a) differentiate K(tx). Part (a) is not needed for parts (b) and (c).