Preliminary Exam September 2020

Problem 1. Let $f : \mathbb{R} \to [0, \infty)$ be continuous and assume that for any $x \in \mathbb{R}$

$$g(x) := \sum_{k=1}^{\infty} (f(x))^k < \infty.$$

Show that g is continuous.

Problem 2.

- (1) Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous. Prove that f is uniformly continuous if and only if |f| is uniformly continuous.
- (2) Show an example that the above claim is false without assuming continuity of f. That is, find a counterexample to the following claim: $f : \mathbb{R}^n \to \mathbb{R}$ is uniformly continuous if and only if |f| is uniformly continuous.

Problem 3. Show that for any $x, y \in \mathbb{R}^2$ and for any $r, s, t \in [0, 1]$ with r + s + t = 2 we have $|\det(x, y)| \le |x|^s |y|^t |x - y|^r$.

Here (x, y) represents the 2 × 2 matrix with vectors x and y as columns. Hint: If you replace y by y - x...

Problem 4. Assume that $f \in C^{\infty}(-1, 1)$ is such that the *n*-th derivative satisfies $|f^{(n)}(x)| \leq n$ for all $x \in (-1, 1)$ and all n = 1, 2, ... Prove that there is $F \in C^{\infty}(\mathbb{R})$ such that F(x) = f(x) for all $x \in (-1, 1)$. **Hint:** Taylor.

Problem 5. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a mapping of class C^1 and let $K \subset \mathbb{R}^n$ be a compact set. Assume that

(1) $|f(x) - f(y)| \ge |x - y|^{2020}$ for all $x, y \in K$. (2) For all $x \in K$.

For all
$$x \in K$$
,
 $\frac{\partial f_i(x)}{\partial x_i} \ge i$, for $i = 1, 2, ..., n$, and $\frac{\partial f_i(x)}{\partial x_j} = 0$, for $1 \le i < j \le n$

Prove that there is an open set U such that $K \subset U$, and f is one-to-one in U.

Problem 6. Let $S = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : |x| = |y| = 1\}$ and let $F : S \to \mathbb{R}$, $F(x, y) = x \cdot y$.

- (a) Use the Lagrange multiplier theorem to find sup F(x, y).
- (b) Use the result of part (a) to conclude the Cauchy-Schwarz inequality:

$$\sum_{i=1}^n x_i y_i \le \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}.$$

 $(x,y) \in S$

Remark. You **must** use the Lagrange multiplier theorem in part (a) in order to get credit.