Linear Algebra Preliminary Exam January 7 2021

Let Y and Z be subspaces of a (not necessarily finite dimensional) linear space X.
(a). Show that (Y + Z)[⊥] = Y[⊥] ∩ Z[⊥].
(b). If X = Y ⊕ Z, then X' = Y[⊥] ⊕ Z[⊥], Z' is isomorphic to Y[⊥], and Y'

(b). If $X = Y \oplus Z$, then $X' = Y \oplus Z^{\perp}$, Z' is isomorphic to Y^{\perp} , and Y' is isomorphic to Z^{\perp} .

Here Y^{\perp} , Z^{\perp} denote the annihilators of Y and Z respectively, and X', Y', Z' are the dual spaces of X, Y, Z.

2. Let X be the linear space of all 3×3 complex matrices. Let

$$N = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right)$$

and $T: X \to X$ be the linear map such that for any $A \in X$

$$TA = AN - NA$$

- (a). Show that $T^k = 0$ for some integer $k \ge 1$ and find the smallest such k.
- (b). Find the Jordan Canonical Form of T.
- 3. Let A be a complex $m \times n$ matrix and B be a complex $n \times m$ matrix where m, n are two positive integers. Show that I AB is invertible if and only if I BA is invertible.
- 4. Let A be a complex $n \times n$ matrix which commutes with all reflection matrices of the form

$$R = I - 2vv^T$$

where $v \in \mathbb{R}^n$ is a unit column vector. Show that $A = \lambda I$ for some scalar $\lambda \in \mathbb{C}$.

5. Let A be an $n \times n$ self-adjoint matrix such that for any $n \times n$ positive definite matrix B, the trace

$$\operatorname{tr} AB > 0.$$

Show that A > 0.

6. Let A be a square matrix such that

$$||A^2||_{HS} = ||A||^2_{HS}$$

Show that A is normal. Here $\|\cdot\|_{HS}$ is the Hilbert-Schmidt norm of a matrix, i.e., for $A = (a_{ij})_{n \times n}$,

$$||A||_{HS} = \left(\sum_{i,j=1}^{n} |a_{ij}|^2\right)^{\frac{1}{2}}.$$