PRELIMINARY EXAMINATION IN LINEAR ALGEBRA
MAY 3, 2019

You may use facts proved in class or in Hoffman/Kunze (provide a proper reference).
Justify all other assertions, including those from homework or test problems.

Problem 1.
(a) Prove or give a counterexample: if T: R? — R3 is a linear transformation such that
null(7") Nrange(7T") has dimension at least 1 then 7' is nilpotent.
(b) Prove or give a counterexample: if 7: R* — R* is a linear transformation such that
null(7") Nrange(7T") has dimension at least 2 then 7' is nilpotent.

Problem 2. Suppose that A is an eigenvalue of a matrix A € C™"*™ with algebraic multi-
plicity k. Show that (A — AI)* has rank n — k.

Problem 3. For any n > 1, classify the matrices Q € R™*" that are both orthogonal and
skew-symmetric, meaning Q' = —Q, up to similarity; i.e. exhibit exactly one representative
from each real similarity class. (Hint: the answer is very different for odd versus even n.)

Problem 4.

(a) For a diagonalizable n x n matrix A, show that det(e?) = efrace(4)

, where e is the
. . . A o
matrix exponential of A: e” = E —k!A .
k=0

(b) Now for an arbitrary 2 x 2 matrix A with trace equal to 0, show that det(e?) = 1.
(Do not ignore the non-diagonalizable case!)

Problem 5.
(a) Show that if the self-adjoint part of a matrix A is positive-definite then A is invertible
and the self-adjoint part of A~! is positive-definite.
(b) Let a be a fixed positive real number. Show that if a self-adjoint matrix A is positive-
definite then |W|| < 1, where W = (I — aA)(I + aA)~! and || - || is the operator
norm induced by the standard Euclidean norm.

Problem 6. Consider

_ L M 2nXx2n
B_<O N)E(C

for L, M, N,O € C™*"™ such that O is the zero matrix.

(a) Show that if B is diagonalizable, then L and M must be diagonalizable.
(b) Show that if L and M are diagonalizable and do not share eigenvalues, then B is
diagonalizable.



Problem 1.

(a) Prove or give a counterexample: if T: R3 — R3 is a linear transformation such that
null(7") Nrange(7") has dimension at least 1 then 7" is nilpotent.

(b) Prove or give a counterexample: if T: R* — R* is a linear transformation such that
null(7") Nrange(7") has dimension at least 2 then 7" is nilpotent.

Solution.
(a) Counterexample: let T have the matrix below relative to the standard basis {e1, e, e3}:

1 00
0 01
0 00

Note that e; is an eigenvector of T" with corresponding eigenvalue 1, so T is not
nilpotent. On the other hand, T'ex = 0 and T'ez = e3, so ey € null(T) Nrange(T).

(b) This is true. If null(7") Nrange(7") has dimension at least 2 then both null(7") and
range(7) have dimension equal to 2, since their dimensions add to 4 by the rank-
nullity theorem and are each at least two by the hypothesis. But this implies that

null(7") = null(7") Nrange(7T") = range(T),
and it follows that 72 = 0.



Problem 2. Suppose that A is an eigenvalue of a matrix A € C"*" with algebraic multi-
plicity k. Show that (A — AI)¥ has rank n — k.

Solution. Let P € C™ ™ be an invertible matrix such that P~'AP is in Jordan form.
Noting that
(PTYAP - AI)F = P71 (A - AD)FP

has the same rank as (A — A\I)¥, we may assume that A itself is in Jordan form: block
diagonal with blocks By, ..., By, corresponding to the distinct eigenvalues Aq,..., A, of A
such that for each 4, B; is upper triangular with all diagonal entries equal to A, (B;);j+1 =1
or 0 for each j, and (B;); = 0 otherwise. Let us assume that A\; = ), so that By € C***.

Since [ is diagonal, A — A\I remains block-diagonal with blocks B; — Al for 1 < i < m.
The diagonal entries of B; — A\l are A\; — A, equal to 0 if and only if ¢ = 1 since A\ = A.
The blocks of (A — AI)¥ are the (B; — AI)*, each with all diagonal entries (\; — A\)¥, again
equal to 0 if and only if i = 1. For each i > 1, (B; — AI)* thus has full rank, so the desired
result follows from the fact that (B; — AI)* is the zero-matrix. This in turn follows from
the Cayley-Hamilton theorem, since all diagonal entries (hence eigenvalues) of By — A\I are
equal to 0.



Problem 3. For any n > 1, classify the matrices Q € R™*" that are both orthogonal and
skew-symmetric, meaning Q' = —Q, up to similarity; i.e. exhibit exactly one representative
from each real similarity class. (Hint: the answer is very different for odd versus even n.)

Solution. Since @ is orthogonal we have
I=QQ" =Q(-Q) = -Q7

so @ satisfies m = 22+ 1 € R[z]. Since m is irreducible over R, it is the minimal polynomial
of @, and since every eigenvalue of () is a root of its minimal polynomial it follows that @
has no real eigenvalues. But if n is odd then since the characteristic polynomial of ) has
odd degree it has a real root. It follows that there is no orthogonal, skew-symmetric matrix
in R™*"™ for odd n.

Now suppose n = 2k is even. The block-diagonal matrix @) with k 2 x 2 blocks, each of

the form
0 -1
QO - <1 O > 9

is skew-symmetric and orthogonal. We claim that every skew-symmetric, orthogonal matrix
P is similar to Q.

“Real” Proof of the Claim. For any u; € R® — {0}, let vi = Pu;. Then since P2 = —1I,
Pvi = —u;. Note that neither of uy, vy is a scalar multiple of the other, since P has no
real eigenvalues, so V3 = span{uj, vi} is two-dimensional and P-invariant, and Qg is the
matrix of P on Vj relative to the basis {uj,vy}.

We may now appeal to induction on k (where, again, n = 2k). The base case follows
directly from above. For the inductive step, note that since P is orthogonal, it preserves the
orthogonal complement Vﬁ of V1 in R™. Its restriction to this 2(k—1)-dimensional subspace
remains orthogonal and skew-symmetric (as can be checked by changing to an orthogonal

basis {uy, vi, w1, ..., w,_o} of R® where {w1,...,w, 2} C Vi), so applying the inductive
hypothesis we obtain a basis {ug, va,...,u, v} relative to which the restriction of P is
block-diagonal with blocks of the form Q. O

“Complex” (alternative) Proof. Since P is real and orthogonal it is unitary (considered now
as a complex matrix) and hence normal: PP* = I = P*P so by the spectral theorem it
is unitarily diagonalizable over C. Because P is real and has only +i as eigenvalues, the
eigenvectors come in complex-conjugate pairs: eg. if Pz = iz then

Pz = Pz = —iz.
Hence there are n pairwise orthogonal unit eigenvectors z1, . . ., z, of P corresponding to the
eigenvalue 7, and for each j the complex conjugate z; of z; is an eigenvector corresponding
to —1.
Taking z; = x; + iy; for x; and y; real, the fact that z; is orthogonal to z; gives:

. . 2 . 2

(x5 +iy; |xj —iy;) = Ix5l1° 4+ il(y; | %5) + (x5 [y5)] = lyslI° = 0.
SInce x; and y; are real, the above thus implies that they are orthogonal and have the same
norm, hence are linearly independent. And since z; has corresponding eigenvalue ¢ we have

PZj = PXj + iPyj = i(Xj + iyj) =-y; + in,
so Px; = —y; and Py; = x;. Therefore the real vector space span{x;,y;} is P-invariant,
and the restriction of P to this subspace has matrix Q) relative to the basis {x;,y;}.
The proof is finished by observing that for k # j, x; and yj are orthogonal to each of
x; and y; (again where z;, = xj, + iy}). This follows from using the equalities (z; | zx) = 0
and (z; | z) = 0 as above. O



Problem 4.

(a)

(b)

— ptrace(A)

For a diagonalizable n x n matrix A, show that det(e?) , where e is the

o
1
. . A ok
matrix exponential of A: e” = E k!A .
k=0

Now for an arbitrary 2 x 2 matrix A with trace equal to 0, show that det(e?) = 1.
(Do not ignore the non-diagonalizable case!)

Solution.

(a)

For an invertible matrix P and a diagonal matrix D such that P~ AP = D we have:

ednn o - 0
_ 0 e 0
e =ePPPT —pePpt=p | , s
0 0 e ednn
where dy1,...,d,, are the diagonal entries of D. (The second two equalities above

are standard facts about the matrix exponential.) Therefore
det(e?) = det(eP) = efrred2z ... gnn — gtrace(D)

But trace(D) = trace(A) since the trace is similarity-invariant.

For a 2 x 2 matrix A with trace 0, we claim that if A is not diagonalizable then it
is nilpotent with A% = 0. The trace of A is the sum of its eigenvalues, i.e. the roots
A1 and \g of its characteristic polynomial. Since the trace is 0 we have Ay = —\;.
If A1 # 0 then since A has two distinct eigenvalues it is diagonalizable. So if A is
not diagonalizable then A\ = Ao = 0. In this case the Jordan form of A is either

(10) = (o)

hence A is nilpotent with A? = 0 or the zero-matrix (which is diagonal).

Given the claim we need only consider the case of A non-zero with A? = 0. In this
case e = I 4 A satisfies the polynomial m = (z — 1)?, so the minimal polynomial
of A divides m, and 1 is the only eigenvalue of e. Therefore det(e?) = 1.



Problem 5.

(a)
(b)

Show that if the self-adjoint part of a matrix A is positive-definite then A is invertible
and the self-adjoint part of A~! is positive-definite.

Let a be a fixed positive real number. Show that if a self-adjoint matrix A is positive-
definite then |W|| < 1, where W = (I — aA)(I + aA)~! and || - || is the operator
norm induced by the standard Euclidean norm.

Solution.

(a)

Write A = S+ T, where S is self-adjoint and T is skew-adjoint, i.e. T* = —T'. Note
that since T is skew-adjoint, for any v we have

(Tv|v) = (v|TV) = =(v|Tv) = =(Tv|v)
is purely imaginary. Thus for v # 0, (Av|v) = (Sv|v) + (T'v|v) is non-zero as
it has positive real part. It follows that Av # 0, hence, since v # 0 was arbitrary,

that A is non-singular.
Now for an arbitrary w # 0, writing w = Av for some v # 0 we find that

(A 'w|w) = (v|Av) = (Av|v)

has positive real part, and as above this equals (5w | w), where S’ is the self-adjoint
part of A~1.

Since A is self-adjoint there is an orthonormal basis {e1, ..., e,} consisting of eigen-
vectors of A. For each i let Ae; = \;e; for A\; > 0. Then

(I —aA)e; = (1 —a))e; and (I +aA)e;=(1+a))e;

for each i, so {e1,...,e,} is an orthogonal basis of eigenvectors for W, with corre-
sponding eigenvalues

1—a)\

1+ a)\l- ’
Since W is normal its operator norm is the modulus (in this case, absolute value)
of its largest eigenvalue. (This can easily be proved directly.) But since a and the
A; are both positive,

1— a)\i —1 2CL)\Z‘
1+ a)\i N 1+ CL)\i
lies between —1 and 1 for each 7.




Problem 6. Consider

_ L M 2nx2n
B(O N)e(C

for L, M, N,O € C™*"™ such that O is the zero matrix.

(a)
(b)

Show that if B is diagonalizable, then L and M must be diagonalizable.
Show that if L and M are diagonalizable and do not share eigenvalues, then B is
diagonalizable.

Solution.

(a)

If w = (u,v) is an eigenvector of B with eigenvalue A then

= (5 3) (3) = (52) = ()

In particular, if v . # 0 then v is an eigenvector of N with eigenvalue \. For
a basis {w1,...,wa,} of C?" consisting of eigenvectors for B, the second factors
{V1,...,va,} comprise a spanning set for C", since they are the image of a span-
ning set under a surjective homomorphism. This set contains a basis {v;,,...,v; },
each an eigenvector of N, and hence N is diagonalizable.

Proof 1 for L

For any wj = (ug,vy) such that v # 0 and k # i; for any j, if Bw, = A\ywy,
then as above the second factor vy lies in the Ap-eigenspace of N. Thus writing
Vi = Z?Zl a;jv;i; as a linear combination of the v;;, we have a; # 0 only if the
eigenvalue corresponding to v;, remains A\p. Then wj = wy, — Z?Zl ajw;; has the
property that Bwj = A\,w), and that wj = (1}, 0) for uj =u; —> ",
u), is an eigenvector of L with eigenvalue \;. Replacing wy, by w) whenever v # 0
and k # i;, we obtain a new basis of C*" with n vectors of the form (uy,0) for

eigenvectors ug of L.

Qaj uij . Then

Proof 2 for L
To show that if B diagonalizable then L is as well, we observe that B is diagonalizable

if and only if its transpose
Lt O
o= (e )

is (as one can easily show directly). For an eigenvector w = (u, v) of B!, arguing as
above shows that u is an eigenvector for L and hence that the first factors of a basis
of C?™ consisting of eigenvectors for B! yield a basis of C" consisting of eigenvectors
for L!, whence L is diagonalizable so L is as well.

We will try to diagonalize B with an invertible matrix of the form:

(00)

For this to be invertible, P and ) must in particular be nonsingular (checking
vectors of the form (v,0) and (0,v), respectively, for v.€ C" — {0}), and in this

case we have:
P K\ ' (P! —plKQ!
0O Q -\ O Q! '



Hence,

(58) (668

P
O
(.P—l —P—UQQ4><_LP LK?+AHQ>

“\ o Q1 0 NQ
[ PT'LP P'LK+ P 'MQ—-P 'KQ'NQ
- o) QINQ

This matrix is diagonal if and only if both P~'LP and Q!N(Q are diagonal, and
LK+MQ@Q—-KQ 'NQ = O. Thusif L and N are diagonalizable then upon choosing
P and Q so that P~'LP and Q 'LQ are diagonal, in order to diagonalize B we
must solve the equation

MQ=KQ 'NQ - LK
for K. We solve this equation column by column. For the jth column c; of K it is
equivalent to the equation (d;jI — L)c; = (MQ);, where d; is the jth diagonal entry
of the diagonal matrix @ ' NQ and (M@Q); is the jth column of MQ. Since d; is

an eigenvalue of IV it is not an eigenvalue of L, so the matrix d;I — L is invertible
and we may take ¢; = (d;I — L)"}(MQ); to solve the equation.



