
PRELIMINARY EXAMINATION IN LINEAR ALGEBRA

MAY 3, 2019

You may use facts proved in class or in Hoffman/Kunze (provide a proper reference).
Justify all other assertions, including those from homework or test problems.

Problem 1.

(a) Prove or give a counterexample: if T : R
3 → R

3 is a linear transformation such that
null(T ) ∩ range(T ) has dimension at least 1 then T is nilpotent.

(b) Prove or give a counterexample: if T : R
4 → R

4 is a linear transformation such that
null(T ) ∩ range(T ) has dimension at least 2 then T is nilpotent.

Problem 2. Suppose that λ is an eigenvalue of a matrix A ∈ C
n×n with algebraic multi-

plicity k. Show that (A− λI)k has rank n− k.

Problem 3. For any n ≥ 1, classify the matrices Q ∈ R
n×n that are both orthogonal and

skew-symmetric, meaning Qt = −Q, up to similarity; i.e. exhibit exactly one representative
from each real similarity class. (Hint : the answer is very different for odd versus even n.)

Problem 4.

(a) For a diagonalizable n× n matrix A, show that det(eA) = etrace(A), where eA is the

matrix exponential of A: eA =

∞∑
k=0

1

k!
Ak.

(b) Now for an arbitrary 2× 2 matrix A with trace equal to 0, show that det(eA) = 1.
(Do not ignore the non-diagonalizable case!)

Problem 5.

(a) Show that if the self-adjoint part of a matrix A is positive-definite then A is invertible
and the self-adjoint part of A−1 is positive-definite.

(b) Let a be a fixed positive real number. Show that if a self-adjoint matrix A is positive-
definite then ‖W‖ < 1, where W = (I − aA)(I + aA)−1 and ‖ · ‖ is the operator
norm induced by the standard Euclidean norm.

Problem 6. Consider

B =

(
L M
O N

)
∈ C

2n×2n

for L,M,N,O ∈ C
n×n such that O is the zero matrix.

(a) Show that if B is diagonalizable, then L and M must be diagonalizable.
(b) Show that if L and M are diagonalizable and do not share eigenvalues, then B is

diagonalizable.



Problem 1.

(a) Prove or give a counterexample: if T : R
3 → R

3 is a linear transformation such that
null(T ) ∩ range(T ) has dimension at least 1 then T is nilpotent.

(b) Prove or give a counterexample: if T : R
4 → R

4 is a linear transformation such that
null(T ) ∩ range(T ) has dimension at least 2 then T is nilpotent.

Solution.

(a) Counterexample: let T have the matrix below relative to the standard basis {e1, e2, e3}:⎛
⎝1 0 0
0 0 1
0 0 0

⎞
⎠

Note that e1 is an eigenvector of T with corresponding eigenvalue 1, so T is not
nilpotent. On the other hand, Te2 = 0 and Te3 = e2, so e2 ∈ null(T ) ∩ range(T ).

(b) This is true. If null(T ) ∩ range(T ) has dimension at least 2 then both null(T ) and
range(T ) have dimension equal to 2, since their dimensions add to 4 by the rank-
nullity theorem and are each at least two by the hypothesis. But this implies that

null(T ) = null(T ) ∩ range(T ) = range(T ),

and it follows that T 2 = 0.



Problem 2. Suppose that λ is an eigenvalue of a matrix A ∈ C
n×n with algebraic multi-

plicity k. Show that (A− λI)k has rank n− k.

Solution. Let P ∈ C
n×n be an invertible matrix such that P−1AP is in Jordan form.

Noting that
(P−1AP − λI)k = P−1(A− λI)kP

has the same rank as (A − λI)k, we may assume that A itself is in Jordan form: block
diagonal with blocks B1, . . . , Bm corresponding to the distinct eigenvalues λ1, . . . , λm of A
such that for each i, Bi is upper triangular with all diagonal entries equal to λi, (Bi)j j+1 = 1

or 0 for each j, and (Bi)jl = 0 otherwise. Let us assume that λ1 = λ, so that B1 ∈ C
k×k.

Since I is diagonal, A − λI remains block-diagonal with blocks Bi − λI for 1 ≤ i ≤ m.
The diagonal entries of Bi − λI are λi − λ, equal to 0 if and only if i = 1 since λ1 = λ.
The blocks of (A− λI)k are the (Bi − λI)k, each with all diagonal entries (λi − λ)k, again
equal to 0 if and only if i = 1. For each i > 1, (Bi − λI)k thus has full rank, so the desired
result follows from the fact that (B1 − λI)k is the zero-matrix. This in turn follows from
the Cayley-Hamilton theorem, since all diagonal entries (hence eigenvalues) of B1 − λI are
equal to 0.



Problem 3. For any n ≥ 1, classify the matrices Q ∈ R
n×n that are both orthogonal and

skew-symmetric, meaning Qt = −Q, up to similarity; i.e. exhibit exactly one representative
from each real similarity class. (Hint : the answer is very different for odd versus even n.)

Solution. Since Q is orthogonal we have

I = QQt = Q(−Q) = −Q2,

so Q satisfies m = x2+1 ∈ R[x]. Since m is irreducible over R, it is the minimal polynomial
of Q, and since every eigenvalue of Q is a root of its minimal polynomial it follows that Q
has no real eigenvalues. But if n is odd then since the characteristic polynomial of Q has
odd degree it has a real root. It follows that there is no orthogonal, skew-symmetric matrix
in R

n×n for odd n.
Now suppose n = 2k is even. The block-diagonal matrix Q with k 2× 2 blocks, each of

the form

Q0 =

(
0 −1
1 0

)
,

is skew-symmetric and orthogonal. We claim that every skew-symmetric, orthogonal matrix
P is similar to Q.

“Real” Proof of the Claim. For any u1 ∈ R
n − {0}, let v1 = Pu1. Then since P 2 = −I,

Pv1 = −u1. Note that neither of u1,v1 is a scalar multiple of the other, since P has no
real eigenvalues, so V1 = span{u1,v1} is two-dimensional and P -invariant, and Q0 is the
matrix of P on V1 relative to the basis {u1,v1}.

We may now appeal to induction on k (where, again, n = 2k). The base case follows
directly from above. For the inductive step, note that since P is orthogonal, it preserves the
orthogonal complement V ⊥

1 of V1 in R
n. Its restriction to this 2(k−1)-dimensional subspace

remains orthogonal and skew-symmetric (as can be checked by changing to an orthogonal
basis {u1,v1,w1, . . . ,wn−2} of Rn, where {w1, . . . ,wn−2} ⊂ V ⊥

1 ), so applying the inductive
hypothesis we obtain a basis {u2,v2, . . . ,uk,vk} relative to which the restriction of P is
block-diagonal with blocks of the form Q0. �
“Complex” (alternative) Proof. Since P is real and orthogonal it is unitary (considered now
as a complex matrix) and hence normal: PP ∗ = I = P ∗P so by the spectral theorem it
is unitarily diagonalizable over C. Because P is real and has only ±i as eigenvalues, the
eigenvectors come in complex-conjugate pairs: eg. if Pz = iz then

P z̄ = Pz = −iz̄.

Hence there are n pairwise orthogonal unit eigenvectors z1, . . . , zn of P corresponding to the
eigenvalue i, and for each j the complex conjugate z̄j of zj is an eigenvector corresponding
to −i.

Taking zj = xj + iyj for xj and yj real, the fact that zj is orthogonal to z̄j gives:

(xj + iyj |xj − iyj) = ‖xj‖2 + i[(yj |xj) + (xj |yj)]− ‖yj‖2 = 0.

SInce xj and yj are real, the above thus implies that they are orthogonal and have the same
norm, hence are linearly independent. And since zj has corresponding eigenvalue i we have

Pzj = Pxj + iPyj = i(xj + iyj) = −yj + ixj ,

so Pxj = −yj and Pyj = xj . Therefore the real vector space span{xj ,yj} is P -invariant,
and the restriction of P to this subspace has matrix Q0 relative to the basis {xj ,yj}.

The proof is finished by observing that for k 	= j, xk and yk are orthogonal to each of
xj and yj (again where zk = xk + iyk). This follows from using the equalities (zj | zk) = 0
and (z̄j | zk) = 0 as above. �



Problem 4.

(a) For a diagonalizable n× n matrix A, show that det(eA) = etrace(A), where eA is the

matrix exponential of A: eA =
∞∑
k=0

1

k!
Ak.

(b) Now for an arbitrary 2× 2 matrix A with trace equal to 0, show that det(eA) = 1.
(Do not ignore the non-diagonalizable case!)

Solution.

(a) For an invertible matrix P and a diagonal matrix D such that P−1AP = D we have:

eA = ePDP−1
= PeDP−1 = P

⎛
⎜⎜⎜⎝
ed11 0 · · · 0
0 ed22 0
...

. . .
...

0 0 · · · ednn

⎞
⎟⎟⎟⎠P−1,

where d11, . . . , dnn are the diagonal entries of D. (The second two equalities above
are standard facts about the matrix exponential.) Therefore

det(eA) = det(eD) = ed11ed22 · · · ednn = etrace(D).

But trace(D) = trace(A) since the trace is similarity-invariant.

(b) For a 2 × 2 matrix A with trace 0, we claim that if A is not diagonalizable then it
is nilpotent with A2 = 0. The trace of A is the sum of its eigenvalues, i.e. the roots
λ1 and λ2 of its characteristic polynomial. Since the trace is 0 we have λ2 = −λ1.
If λ1 	= 0 then since A has two distinct eigenvalues it is diagonalizable. So if A is
not diagonalizable then λ1 = λ2 = 0. In this case the Jordan form of A is either(

0 0
1 0

)
or

(
0 0
0 0

)
,

hence A is nilpotent with A2 = 0 or the zero-matrix (which is diagonal).
Given the claim we need only consider the case of A non-zero with A2 = 0. In this

case eA = I + A satisfies the polynomial m = (x − 1)2, so the minimal polynomial
of A divides m, and 1 is the only eigenvalue of eA. Therefore det(eA) = 1.



Problem 5.

(a) Show that if the self-adjoint part of a matrix A is positive-definite then A is invertible
and the self-adjoint part of A−1 is positive-definite.

(b) Let a be a fixed positive real number. Show that if a self-adjoint matrix A is positive-
definite then ‖W‖ < 1, where W = (I − aA)(I + aA)−1 and ‖ · ‖ is the operator
norm induced by the standard Euclidean norm.

Solution.

(a) Write A = S + T , where S is self-adjoint and T is skew-adjoint, i.e. T ∗ = −T . Note
that since T is skew-adjoint, for any v we have

(Tv |v) = (v |T ∗v) = −(v |Tv) = −(Tv |v)
is purely imaginary. Thus for v 	= 0, (Av |v) = (Sv |v) + (Tv |v) is non-zero as
it has positive real part. It follows that Av 	= 0, hence, since v 	= 0 was arbitrary,
that A is non-singular.

Now for an arbitrary w 	= 0, writing w = Av for some v 	= 0 we find that

(A−1w |w) = (v |Av) = (Av |v)
has positive real part, and as above this equals (S′w |w), where S′ is the self-adjoint
part of A−1.

(b) Since A is self-adjoint there is an orthonormal basis {e1, . . . , en} consisting of eigen-
vectors of A. For each i let Aei = λiei for λi > 0. Then

(I − aA)ei = (1− aλi)ei and (I + aA)ei = (1 + aλi)ei

for each i, so {e1, . . . , en} is an orthogonal basis of eigenvectors for W , with corre-
sponding eigenvalues

1− aλi

1 + aλi
.

Since W is normal its operator norm is the modulus (in this case, absolute value)
of its largest eigenvalue. (This can easily be proved directly.) But since a and the
λi are both positive,

1− aλi

1 + aλi
= 1− 2aλi

1 + aλi

lies between −1 and 1 for each i.



Problem 6. Consider

B =

(
L M
O N

)
∈ C

2n×2n

for L,M,N,O ∈ C
n×n such that O is the zero matrix.

(a) Show that if B is diagonalizable, then L and M must be diagonalizable.
(b) Show that if L and M are diagonalizable and do not share eigenvalues, then B is

diagonalizable.

Solution.

(a) If w = (u,v) is an eigenvector of B with eigenvalue λ then

Bw =

(
L M
O N

)(
u
v

)
=

(
Lu+Mv

Nv

)
=

(
λu
λv

)
.

In particular, if v 	= 0 then v is an eigenvector of N with eigenvalue λ. For
a basis {w1, . . . ,w2n} of C2n consisting of eigenvectors for B, the second factors
{v1, . . . ,v2n} comprise a spanning set for C

n, since they are the image of a span-
ning set under a surjective homomorphism. This set contains a basis {vi1 , . . . ,vin},
each an eigenvector of N , and hence N is diagonalizable.

Proof 1 for L
For any wk = (uk,vk) such that vk 	= 0 and k 	= ij for any j, if Bwk = λkwk

then as above the second factor vk lies in the λk-eigenspace of N . Thus writing
vk =

∑n
j=1 ajvij as a linear combination of the vij , we have aj 	= 0 only if the

eigenvalue corresponding to vij remains λk. Then w′
k = wk −

∑n
j=1 ajwij has the

property that Bw′
k = λkw

′
k and that w′

k = (u′
k,0) for u

′
k = uk −

∑n
j=1 ajuij . Then

u′
k is an eigenvector of L with eigenvalue λk. Replacing wk by w′

k whenever vk 	= 0
and k 	= ij , we obtain a new basis of C2n with n vectors of the form (uk,0) for
eigenvectors uk of L.

Proof 2 for L
To show that ifB diagonalizable then L is as well, we observe thatB is diagonalizable
if and only if its transpose

Bt =

(
Lt O
M t N t

)

is (as one can easily show directly). For an eigenvector w = (u,v) of Bt, arguing as
above shows that u is an eigenvector for Lt and hence that the first factors of a basis
of C2n consisting of eigenvectors for Bt yield a basis of Cn consisting of eigenvectors
for Lt, whence Lt is diagonalizable so L is as well.

(b) We will try to diagonalize B with an invertible matrix of the form:(
P K
O Q

)

For this to be invertible, P and Q must in particular be nonsingular (checking
vectors of the form (v,0) and (0,v), respectively, for v ∈ C

n − {0}), and in this
case we have: (

P K
O Q

)−1

=

(
P−1 −P−1KQ−1

O Q−1

)
.



Hence, (
P K
O Q

)−1(
L M
O N

)(
P K
O Q

)

=

(
P−1 −P−1KQ−1

O Q−1

)(
LP LK +MQ
O NQ

)

=

(
P−1LP P−1LK + P−1MQ− P−1KQ−1NQ

O Q−1NQ

)

This matrix is diagonal if and only if both P−1LP and Q−1NQ are diagonal, and
LK+MQ−KQ−1NQ = O. Thus if L and N are diagonalizable then upon choosing
P and Q so that P−1LP and Q−1LQ are diagonal, in order to diagonalize B we
must solve the equation

MQ = KQ−1NQ− LK

for K. We solve this equation column by column. For the jth column cj of K it is
equivalent to the equation (djI −L)cj = (MQ)j , where dj is the jth diagonal entry
of the diagonal matrix Q−1NQ and (MQ)j is the jth column of MQ. Since dj is
an eigenvalue of N it is not an eigenvalue of L, so the matrix djI − L is invertible
and we may take cj = (djI − L)−1(MQ)j to solve the equation.


