Preliminary Exam in Advanced Calculus

April 2012

Write solutions to different problems on separate sheets. Use scrap paper first to solve problems and write final solutions in a legible form taking care of clarity of presentation.

Problem 1. Let $\{x_n\}_{n=1}^{\infty}$ be a nonnegative, decreasing sequence such that $\sum_{n=1}^{\infty} x_n$ is convergent.

Prove that $\sum_{n=1}^{\infty} 2^n x_{2^n}$ is also convergent.

Problem 2. Let $x_{ij}, i, j \in \mathbb{N} = \{1, 2, ...\}$ be real numbers bounded by 1, $|x_{ij}| \leq 1$ for all $i, j \in \mathbb{N}$. Prove that there is a sequence $j_i < j_2 < j_3 < ...$ such that for every $i \in \mathbb{N}$, the sequence $(x_{ij_n})_{n=1}^{\infty}$ is convergent.

Problem 3. Suppose that $f : (0,1) \to \mathbb{R}$ is continuous and bounded and such that the limit $\lim_{x\to 0^+} f(x)$ does not exist. Prove that there is an interval [a,b], a < b such that for every $x \in [a,b]$ there is a decreasing sequence $x_k \in (0,1)$, $x_k \to 0$ such that $f(x_k) \to x$.

Problem 4. Given a positive integer n, prove that there is $\varepsilon > 0$ such that for every $n \times n$ matrix A with $|A| < \varepsilon$ (Hilbert-Schmidt norm), there is an $n \times n$ matrix B such that $A = B^2 + B$. **Hint:** Differentiate $f(B) = B^2 + B$.

Problem 5. For $a = (a_0, a_1, \ldots, a_n) \in \mathbb{R}^{n+1}$, $a_n \neq 0$ let $P_a(x) = a_n x^n + \ldots + a_1 x + a_0$. Suppose that for $a^0 = (a_0^0, \ldots, a_n^0)$, $a_n^0 \neq 0$ the polynomial $P_{a^0}(x)$ has *n* distinct real roots. Prove that there is $\varepsilon > 0$ and C^{∞} smooth functions

$$\lambda_1, \ldots, \lambda_n : B^{n+1}(a^0, \varepsilon) \to \mathbb{R}$$

such that for any $a \in B^{n+1}(a^0, \varepsilon)$, $\lambda_1(a), \ldots, \lambda_n(a)$ are distinct roots of the polynomial $P_a(x)$. In other words, prove that in a small neighborhood of a^0 , roots of the polynomial P_a depend smoothly on the coefficients a_0, a_1, \ldots, a_n .

Problem 6. Let $x = (x_1, x_2)$ and f(x) be a C^2 function on \mathbb{R}^2 such that $|\partial^2 f(x)/\partial x_j \partial x_k| \leq 1$ for all $x \in \mathbb{R}^2$ and $j, k \in \{1, 2\}$. Prove that

$$\left| \iint_{|x| \le 1} f(x) dA - \pi f(0,0) \right| \le 3/2.$$