Preliminary Exam in Advanced Calculus

April 2012

Write solutions to different problems on separate sheets. Use scrap paper first to solve problems and write final solutions in a legible form taking care of clarity of presentation.

Problem 1. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a nonnegative, decreasing sequence such that $\sum_{n=1}^{\infty} x_{n}$ is convergent. Prove that $\sum_{n=1}^{\infty} 2^{n} x_{2^{n}}$ is also convergent.

Problem 2. Let $x_{i j}, i, j \in \mathbb{N}=\{1,2, \ldots\}$ be real numbers bounded by $1,\left|x_{i j}\right| \leq 1$ for all $i, j \in \mathbb{N}$. Prove that there is a sequence $j_{i}<j_{2}<j_{3}<\ldots$ such that for every $i \in \mathbb{N}$, the sequence $\left(x_{i j_{n}}\right)_{n=1}^{\infty}$ is convergent.

Problem 3. Suppose that $f:(0,1) \rightarrow \mathbb{R}$ is continuous and bounded and such that the limit $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist. Prove that there is an interval $[a, b], a<b$ such that for every $x \in[a, b]$ there is a decreasing sequence $x_{k} \in(0,1), x_{k} \rightarrow 0$ such that $f\left(x_{k}\right) \rightarrow x$.

Problem 4. Given a positive integer n, prove that there is $\varepsilon>0$ such that for every $n \times n$ matrix A with $|A|<\varepsilon$ (Hilbert-Schmidt norm), there is an $n \times n$ matrix B such that $A=B^{2}+B$. Hint: Differentiate $f(B)=B^{2}+B$.

Problem 5. For $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1}, a_{n} \neq 0$ let $P_{a}(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$. Suppose that for $a^{0}=\left(a_{0}^{0}, \ldots, a_{n}^{0}\right), a_{n}^{0} \neq 0$ the polynomial $P_{a^{0}}(x)$ has n distinct real roots. Prove that there is $\varepsilon>0$ and C^{∞} smooth functions

$$
\lambda_{1}, \ldots, \lambda_{n}: B^{n+1}\left(a^{0}, \varepsilon\right) \rightarrow \mathbb{R}
$$

such that for any $a \in B^{n+1}\left(a^{0}, \varepsilon\right), \lambda_{1}(a), \ldots, \lambda_{n}(a)$ are distinct roots of the polynomial $P_{a}(x)$. In other words, prove that in a small neighborhood of a^{0}, roots of the polynomial P_{a} depend smoothly on the coefficients $a_{0}, a_{1}, \ldots, a_{n}$.

Problem 6. Let $x=\left(x_{1}, x_{2}\right)$ and $f(x)$ be a C^{2} function on \mathbb{R}^{2} such that $\left|\partial^{2} f(x) / \partial x_{j} \partial x_{k}\right| \leq 1$ for all $x \in \mathbb{R}^{2}$ and $j, k \in\{1,2\}$. Prove that

$$
\left|\iint_{|x| \leq 1} f(x) d A-\pi f(0,0)\right| \leq 3 / 2
$$

