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Abstract. An alternative formulation of the midpoint method is employed to analyze its advantages as an implicit second-order absolutely
stable timestepping method. Legacy codes originally using the backward Euler method can be upgraded to this method by inserting a single line
of new code. We show that the midpoint method, and a theta-like generalization, are B-stable. We outline three estimates of local truncation
error that allow adaptive time-stepping.

1. One line of code to change a Backward Euler code into to a second-order, unconditionally stable,
conservative method. For the numerical approximation of a general evolution equation:

y′(t) = f (t,y(t)), (1.1)

on the mesh points {tn}n≥0, and with the timestep τn, such that:

tn+1 = tn + τn, tn+1/2 = tn + 1
2 τn,

we recall the classical midpoint quadrature rule:

yn+1− yn

τn
= f (tn+1/2,yn+1/2), (1.2)

where yn ≈ y(tn). The method (1.2) is ubiquitously presented and used [8, 11, 15, 18, 19, 21, 26, 27, 29–31] in the
apparently different form:

yn+1− yn

τn
= f
(

tn+1/2,
yn+1 + yn

2

)
. (1.3)

The reason for the wide use of (1.3) instead of (1.2) (see e.g. [27, page 133]) is due to the natural question: ‘but which
value should we take for yn+1/2?’. The method (1.3) is an implicit second-order A-stable time-stepping method, and
is the preferred method for solving evolutive conservative systems of partial differential equations (PDEs), along
with the second order backward differentiation formula (BDF2) for dissipative PDEs.

From an algorithmic viewpoint, increasing the numerical accuracy of a complex legacy code, based on the first-
order backward Euler (BE) method, to a second-order A-stable method, can be a difficult task. One straightforward
solution would be to apply non-intrusive minimal modifications to the algorithm, i.e., by adding a few lines of
code and post-processing the original BE solution into a ‘filtered’ higher-order solution. This is currently done in
geophysical fluid dynamics, to improve the stability and accuracy of the solution to the leap-frog (explicit midpoint)
method, by filtering it with Robert-Asselin or Robert-Asselin-Williams filters [3, 25, 33, 36–38, 40–42]. Recently,
the BE solution was filtered into the solution to a second-order linear multistep method (LMM), similar to a BDF2
solution (see e.g., [24]), with a reduced discrete curvature and numerical dissipation.

Most LMMs [16, 27], when considered with variable steps, do not preserve the zero-stability or unconditional
A-stability properties of the constant step versions. For example, the variable step version of the trapezoidal method
(Crank-Nicolson) is unstable [16], [39, pp. 181-182]; similarly, BDF2 loses zero-stability and A-stability when used
with a variable stepsize. The trapezoidal method, even in the constant step case, is A-stable but not B-stable [1].
Also, “it is not known which of the LMMs preserve quadratic invariants” [5].

An alternative non-intrusive modification to the BE method, with the goal of defining a family of second-order,
variable step, unconditionally stable one-step methods, relies on the successful resolution of the above question
regarding (1.2). This alternative is based on the fact that both the midpoint (1.2) and the trapezoidal methods can be
viewed as a sequence of backward-Euler then forward-Euler methods, respectively a forward-Euler then a backward-
Euler method, where the first computation is performed at the time tn+1/2, see e.g., [26, page 223] and [17, page
57].
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Consequently, consider implementing the midpoint rule (1.2) by solving a backward-Euler step at the half-
integer time step tn+1/2, followed by a forward-Euler step to tn+1:

yn+1/2− yn

τn/2
= f (tn+1/2,yn+1/2), (BE)

yn+1− yn+1/2

τn/2
= f (tn+1/2,yn+1/2). (FE)

We point out that solving the equations (BE)-(FE) is equivalent to, and reduces to only solving (BE), and then
applying a time-filter, as the (FE) step is equivalent to a linear extrapolation. Hence we evaluate yn+1 = 2yn+1/2−yn,
and the equation (BE)-(FE) can be thought of as a single process designated as (BEFE):

yn+1/2− yn

τn/2
= f (tn+1/2,yn+1/2),

yn+1 = 2yn+1/2− yn.

(BEFE)

Notice that the second step can also be written as:

yn+1/2 =
yn+1 + yn

2
,

and therefore both (1.2) and (1.3) yield exactly the same numerical approximations, i.e., (1.2) is a second-order
accurate, unconditionally A-stable method. The second formulation (BEFE), while equivalent, makes it obvious
how to bootstrap an existing Euler code to a second-order accurate, unconditionally energy stable, conservative,
symplectic code. An important characteristic of (1.2) is the fact that it is a one-leg two-step method, which makes it
easy to view it as a variable-step method, without losing the stability property. There are several options as to how
to adapt the time-step τn (see e.g., [22, 23]), namely how to estimate the local truncation error.

This implementation (BEFE) of the midpoint method is consequential from the viewpoint of its potential ap-
plications for time-stepping methods of complex partial differential equations. The first advantage is the ease of
non-intrusive implementation: it takes one line of code to transform a first-order dissipative method to a second-
order accurate, energy conservative, stable method. (We recall that Dahlquist’s barrier limits the accuracy of A-stable
linear multistep methods to second-order.) Moreover, the midpoint rule is a symplectic method for general Hamil-
tonian systems, conserving all quadratic Hamiltonians [2, 5], unconditionally stable (A-stable and B-stable [1, 7]).
Another important remark is that the constant in the local truncation error of (1.3), when seen in the implementa-
tion (BEFE), is 1

24 , instead of the usual − 1
12 . Thirdly, time-adaptivity can also be implemented with non-intrusive

minimal algorithmic changes, mitigating the fact that the midpoint rule is not a Poisson map [26].
For coupled complex systems, like ocean-atmosphere, groundwater-surface water, fluid-structure interactions,

or magnetohydrodynamics, the current trend is to employ partitioning methods of implicit-explicit type, which solve
each equation separately by a legacy code, and transfer information between the subdomains and algorithms. This
breaking of the monolithic approach routinely comes at the cost of stability. Most existing partitioned stable methods
are only first-order accurate in time. The (BEFE) implementation opens the path of extending the current partitioning
first-order stable methods to second-order accurate variable-step unconditionally stable methods, by manipulating
the computed solution at tn+1/2 in a stable manner. Recently, this approach has been applied to problems in fluid-
structure interaction [6], magnetohydrodynamics and ocean-atmosphere modeling. Note also that the computed
solution at tn+1/2 allows further manipulation, such as modular spatial filtering, in order to improve the qualitative
properties of the numerical simulations [34, 35].

2. Generalization to a θ -like method. We remark also that (BEFE) is a particular instance of the one-leg
‘θ -like’ method:

yn+1− yn

τn
= f (tn+θ ,yn+θn), (2.1)

implemented as: 
yn+θn − yn

θnτn
= f (tn+θn ,yn+θn),

yn+1− yn+θn

(1−θn)τn
= f (tn+θn ,yn+θn).

(2.2)
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which can be rewritten as: 
yn+θn − yn

θnτn
= f (tn+θn ,yn+θn),

yn+1 =
1
θn

yn+θn −
( 1

θn
−1
)
yn.

(2.3)

Notice that (2.1) is not the classical linear multistep θ method [20, page 182], but Cauchy’s one-leg version (see
e.g. [9, pp. 40], also [12–14]):

yn+1− yn

τn
= f
(
tn+θ ,θnyn+1 +(1−θn)yn

)
, (2.4)

since, as above, we have from the second part of (2.3) that yn+θn = θnyn+1 +(1−θn)yn.
REMARK 1. It was recently proved in [4], for the Navier-Stokes equations, that the solutions constructed using

the one-leg method (2.4) (with θn = 1
2 + τ1−ε

n ) for the finite-difference time-discretization and the finite elements
methods for the spatial-discretization, give rise to suitable weak solutions in the sense of Scheffer and Caffarelli-
Kohn-Nirenberg. In the following we mean stability in the sense of B-stability [7], which implies A-stability
[12]. We say a method is B-stable if for any f satisfying the condition that 〈 f (u)− f (v),u− v〉 ≤ 0 for u,v in a
Hilbert space, it holds that ‖yn+1− zn+1‖ ≤ ‖yn− zn‖, where {yn}n≥0,{zn}n≥0 are two sequences of approximations
computed with the method. Dahlquist introduced a similar criterion for certain types of multistep methods, G-
stability (Dahlquist 1975, see e.g., [11] or [28, p.308]), which is equivalent to A-stability for constant step linear
multistep methods.

PROPOSITION 2.1. The midpoint method (BE)-(FE), and the θ -method (2.2) for 1
2 ≤ θn≤ 1, are unconditionally-

stable, and the following equality holds:

1
2
‖yn+1‖2− 1

2
‖yn‖2 +

2θn−1
2
‖yn+1− yn‖2 = τn〈 f (tn+θn ,yn+θn),yn+θn〉.

Proof. We prove the result only for (2.2), since the midpoint method is obtained by taking θn = 1/2. First, for
B-stability, we consider the equation (2.4) for {yn+1} and respectively {zn+1}. Then subtract, take the inner product
with τn(yn+θn − zn+θn), use the Cauchy-Schwarz inequality and the definition to obtain

0≥ τn〈 f (yn+θn)− f (zn+θn),yn+θn − zn+θn〉
= 〈yn+1− zn+1,θn(yn+1− zn+1)+(1−θn)(yn− zn)〉
≥
(
θn‖yn+1− zn+1‖+(1−θn)‖yn− zn‖

)(
‖yn+1− zn+1‖−‖yn− zn‖

)
,

which yields ‖yn+1− zn+1‖ ≤ ‖yn− zn‖.
For the energy equality we proceed in a similar manner. Multiplying both equations in (2.2) by θnτnyn+θn and
(1−θn)τnyn+θn respectively, and applying the polarization identity we obtain:

1
2
‖yn+θn‖

2− 1
2
‖yn‖2 +

1
2
‖yn+θn − yn‖2 = θnτn f (tn+θn ,yn+θn)yn+θn ,

1
2
‖yn+1‖2− 1

2
‖yn+θn‖

2− 1
2
‖yn+1− yn+θn‖

2 = (1−θn)τn f (tn+θn ,yn+θn)yn+θn .

Summation and the use of (2.2) completes the argument.

3. Time-step adaptivity. We begin this section by a small observation: the local truncation error1 of the
midpoint method (BEFE) is:

Tn+1 =
1
24

τ
3
n y′′′(tn+1/2)+O(τ5

n ). (3.1)

The same formula holds for the ‘θ−like’ method (2.1), provided θn =
1
2 +

1
2 τ2

n .

1The local truncation error holds provided the solution is smooth enough.
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Therefore, we can adaptively adjust the time step τn by enforcing an estimate of the local truncation error (1.2),
denoted T̂n+1, to equal a tolerance, i.e., such that the ‖T̂n+1‖≈ tol (see e.g. [23]). The time-step τnew

n which imposes
that T̂n+1 is sufficiently small is given by:

τ
new
n = κτn

∣∣∣∣ tol

‖T̂n+1‖

∣∣∣∣ 1
3
, (3.2)

where κ = 1. In our computations, we found that more conservative coefficient values of the (safety coefficient [27,
p.168], [26, p.255]) κ = 0.90÷ 0.95 minimize the number of time step rejections in the adaptive algorithm, while
increasing the number of time intervals2.

There are numerous ways in which the time-step adaptivity can be implemented (see e.g. [23]), out of which
we present three methods. The first choice is based on the estimation of the LTE using Taylor expansions. The
other two options estimate the local truncation error by the difference between the numerical midpoint solution
and a second-order, and respectively a third-order approximation, given by formulae similar to the explicit Adams-
Bashforth 2 (AB2) and Adams-Bashforth 3 (AB3) methods. These two methods are related to the classical AB2
and AB3 (see e.g., [27, p. 398]), the difference being that they use the function values evaluated at half-times
fn+1/2, fn−1/2, fn−3/2, fn−5/2.

Result: Adaptive midpoint rule
initialization: set tol, compute y1 and τ0 with a one step second-order accurate method, such that τ0 is in
the convergence range (see e.g., [10, page 367]);
compute y2 and τ1 with a second order accurate method, t2 = t1 + τ1;
tnew = t2, τnew = τ1;
for n≥ 2 (i.e., tnew, τnew, yn,yn−1,yn−2 are given);
while tnew ≤ T do

τn← τnew ;
evaluate yn+1 with the midpoint rule (1.2);
evaluate T̂n+1 with (LTE-Taylor), (LTE-AB2) or (LTE-AB3);

τnew← κτn
∣∣tol/‖T̂n+1‖

∣∣ 1
3 ;

if ‖T̂n+1‖ ≤ tol then
tn+1← tn + τnew, tnew← tn+1, n← n+1

end
end

3.1. Estimation of the local truncation error using Taylor expansions. In order to estimate the numerical
value of T̂n+1, we need to evaluate y′′′(tn). We proceed by using Taylor expansions:

y′(tn+1/2) = y′(tn)+
τn

2
y′′(tn)+

τ2
n

8
y′′′(tn)+O(τ3

n ),

y′(tn−1/2) = y′(tn)−
τn−1

2
y′′(tn)+

τ2
n−1

8
y′′′(tn)+O(τ3

n−1),

y′(tn−3/2) = y′(tn)−
2τn−1 + τn−2

2
y′′(tn)+

(2τn−1 + τn−2)
2

8
y′′′(tn)+O(τ3

n−1 + τ
3
n−2),

which, eliminating y′(tn) and y′′(tn), gives:

y′(tn+1/2)− y′(tn−1/2)

τn + τn−1
−

y′(tn−1/2)− y′(tn−3/2)

τn−1 + τn−2
=

1
8
(τn +2τn−1 + τn−2)y′′′(tn)+O(τ2

n + τ
2
n−1 + τ

2
n−2).

Using the numerical method (1.2), the LTE (3.1) can finally be estimated in terms of the computed solutions:

T̂n+1 =
τ3

n

3(τn +2τn−1 + τn−2)

( fn+1/2− fn−1/2

τn + τn−1
−

fn−1/2− fn−3/2

τn−1 + τn−2

)
(LTE-Taylor)

2 From (3.2) we see that if T̂n+1 > tol, then τn is decreased, and the algorithm repeats the midpoint rule step with a reduced time-step.
Respectively, if T̂n+1 ≤ tol, then τn is increased, and the computation moves to the next time interval, with the increased time step. The safety
factor κ < 1 reduces the probability of the new time-steps being rejected in the [if ‖T̂n+1‖ ≤ tol] test in the Algorithm 1.
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=
τ3

n

3(τn +2τn−1 + τn−2)

( yn+1−yn
τn
− yn−yn−1

τn−1

τn + τn−1
−

yn−yn−1
τn−1

− yn−1−yn−2
τn−2

τn−1 + τn−2

)
=

τ3
n

3(τn +2τn−1 + τn−2)

(
yn+1

1
τn(τn + τn−1)

− yn
τn + τn−1 + τn−2

τnτn−1(τn−1 + τn−2)

+ yn−1
τn + τn−1 + τn−2

τn−1τn−2(τn + τn−1)
− yn−2

1
τn−2(τn−1 + τn−2)

)
.

3.2. Estimation of the local truncation error using a variable step AB-2 solution. Here we estimate the
local truncation error at tn+1 by evaluating the difference between the O(∆t2) midpoint-solution yn+1 and another
second-order approximation, yÃB2

n+1, obtained by a variable-step Adams-Bashforth 2-like method. Let Π1(t) be the
polynomial interpolating f (y(t)) at nodes {tn−1/2, tn−3/2} and values { fn−1/2, fn−3/2}, which by (BEFE) denote:

fn−1/2 =
yn− yn−1

τn−1
, fn−3/2 =

yn−1− yn−2

τn−2
.

Then the solution to the AB2-like with variable step is:

yÃB2
n+1 = yn +

∫ tn+1

tn
Π1(t)dt = yn + fn−1/2

τn(τn +2τn−1 + τn−2)

τn−1 + τn−2
− fn−3/2

τn(τn + τn−1)

τn−1 + τn−2

= yn
(τn + τn−1)(τn + τn−1 + τn−2)

τn−1(τn−1 + τn−2)
− yn−1

τn(τn + τn−1 + τn−2)

τn−1τn−2
+ yn−2

τn(τn + τn−1)

τn−2(τn−1 + τn−2)
, (AB2-like)

and its local truncation error (under the ‘localization assumption’, i.e. back values are exact, see e.g. [23, p.70], [32,
p.56]) can be written:

T̃ AB2
n+1 = τ

3
n y′′′(tn+1/2)

(
1

24
+

1
8

(
1+

τn−1

τn

)(
1+2

τn−1

τn
+

τn−2

τn

))
.

For brevity, we denote the error coefficient in the right hand side, which depends on timestep ratios, by:

Rn =
1

24
+

1
8

(
1+

τn−1

τn

)(
1+2

τn−1

τn
+

τn−2

τn

)
.

Then, from (3.1) and the expression above, we obtain the following approximation of the local truncation error of
the midpoint rule (BEFE):

T̂n+1 = (ymidpoint
n+1 − yÃB2

n+1)
1

1−1/(24Rn)
, (LTE-AB2)

where ymidpoint
n+1 denotes the midpoint solution from (BEFE), and yÃB2

n+1 is given in (AB2-like).

3.3. Estimation of the local truncation error using a variable step AB-3 solution. We choose to estimate
the local truncation error at tn+1 by evaluating the difference between the O(∆t2) midpoint-solution yn+1 and a
third-order approximation, un+1, obtained by the variable-step Adams-Bashforth 3 method (see e.g., [27, p. 398]).
We denote:

fn−1/2 =
yn− yn−1

τn−1
, fn−3/2 =

yn−1− yn−2

τn−2
, fn−5/2 =

yn−2− yn−3

τn−3
,

and let Π2(t) be the polynomial interpolating f (y(t)) at nodes {tn−1/2, tn−3/2, tn−5/2} and values { fn−1/2, fn−3/2, fn−5/2}:

Π2(t) = fn−1/2 +
fn−1/2− fn−3/2

tn−1/2− tn−3/2

(
t− tn−1/2

)
+

fn−1/2− fn−3/2
tn−1/2−tn−3/2

− fn−3/2− fn−5/2
tn−3/2−tn−5/2

tn−1/2− tn−5/2

(
t− tn−1/2

)(
t− tn−3/2

)
.

Hence:

un+1 ≈ yn +
∫ tn+1

tn
Π2(t)dt = yn + τn

[
fn−1/2 +

fn−1/2− fn−3/2

tn−1/2− tn−3/2

τn + τn−1

2
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+

fn−1/2− fn−3/2
tn−1/2−tn−3/2

− fn−3/2− fn−5/2
tn−3/2−tn−5/2

tn−1/2− tn−5/2
·
(1

3
τ

2
n +

1
2

τ
2
n−1 +

3
4

τnτn−1 +
1
4

τnτn−2 +
1
4

τn−1τn−2

)]
,

and therefore the local truncation error can be approximated by:

T̂n+1 = τn

[
fn−1/2 +

fn−1/2− fn−3/2

tn−1/2− tn−3/2

τn + τn−1

2
(LTE-AB3)

+

fn−1/2− fn−3/2
tn−1/2−tn−3/2

− fn−3/2− fn−5/2
tn−3/2−tn−5/2

tn−1/2− tn−5/2
·
(1

3
τ

2
n +

1
2

τ
2
n−1 +

3
4

τnτn−1 +
1
4

τnτn−2 +
1
4

τn−1τn−2

)]
.

3.4. The conservation property. One of the most characteristic features of an ODE solver is its accuracy. An
ODE problem is often thought of simply as a need to approximate the value y(T ) to high precision with minimal
effort. Often, however, the variables controlled by an ODE inherently obey implicit laws as well. In a sense, the
variables have both a landscape or manifold of allowed behaviors, and a dynamic that defines their progression
in time from one behavior to another. As a simple example, in the common SIR model of infection, there is
generally an implicit conservation law that S+ I+R = constant, which could be made explicit by summing the three
equations. An ODE solver applied to an SIR model may produce solution values that are accurate, in the sense
that the computed S(T), I(T), and R(T) are close to the true values, while not exactly satisfying the conservation
law. Thus, a small, perhaps fractional number of people have been created by the limited accuracy of the solver.
Often, such deviations are not noticed, or regarded as an unavoidable error. But a conservation law can represent a
physical law (conservation of energy or mass) or a logical law (conservation of the total population). Thus aside from
accuracy, another important feature of an ODE solver can be the ability to preserve a conserved quantity exactly.
This is especially true in physics, astronomy, and even climate simulation, where researchers modeling the flow of
a glacier over a century expect the initial and final masses to agree until the last few decimals. Correspondingly, the
mathematical field of geometric integration [26] has arisen, concentrating on the geometric structures imposed by
satisfying conservation laws.

One of the remarkable features of the midpoint method is that it can preserve conserved quantities that are
implicit in a system of ODE’s, as long as that quantity can be expressed in terms of a polynomial in the state variables,
of quadratic degree or less. Thus, if the midpoint method is applied to an SIR model, the total population stays
exactly the same, from beginning to end. The midpoint method conserves the energy of many simple mechanical
systems, such as the pendulum. The conservation law for a common predator-prey model involves logarithms, and
so will not be conserved exactly. However, even here, the midpoint method can stay much closer to the original
conservation value than many other methods.

As a simple example of a conservation law, we can consider an ODE that describes a closed path along the
surface of a unit sphere, as mentioned by Hairer [27].

dx
dt

= (
1
c
− 1

b
)zy

dy
dt

= (
1
a
− 1

c
)xz

dz
dt

= (
1
b
− 1

a
)yx

with a = 1.6,b = 1,c = 2
3 . A conserved quantity is, of course, x2 + y2 + z2 = 1

Here, it is obvious that there must be both a landscape (the surface) and a dynamic (how to move) that are
wrapped together into the ODE system. An ODE solver that approximates both landscape and dynamic will
construct a path that immediately leaves the surface of the sphere and gradually drifts away. This deviation can
be reduced but never eliminated. As our test, we start at time t = 0.0 with the initial condition (x0,y0,z0) =
(cos(0.9),0.0,sin(0.9)). Figure [3.1] compares the conservation plots for solutions using 1,000 Euler steps ver-
sus 100 midpoint steps and 100 RK4 steps: in integrating to T = 50. While the Euler method has struggled, the
higher precision midpoint and RK4 methods seem to have done an excellent job. MATLAB’s suite of ODE solvers,
best typified by ode45(), which include adaptive stepping, also showed no obvious conservation difficulty.
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FIG. 3.1. Conservation over [0,50] for Euler, Midpoint and RK4.

As a stronger test, then, we extend the problem interval to 0 ≤ t ≤ 10,000. For the fixed step Midpoint and
RK4 codes, we use 20,000 equal steps, while for the adaptive MATLAB solvers ode15s(), ode23(), ode23s,

ode45() use their default settings. The Midpoint method has a perfect conservation history, while the RK4 results

FIG. 3.2. Conservation over [0,100000] for Midpoint, RK4 and MATLAB solvers.

are just beginning to show deterioration. On the other hand, each of the MATLAB solvers shows a serious failure in
terms of conservation.

For this demonstration, a fixed stepsize version of the Midpoint method was used. It would be worthwhile to
repeat the calculations using an adaptive version of the algorithm.

The conservation property of the Midpoint method applies to situations where the conserved quantity is a
polynomial of at most quadratic degree in the variables. This is a common property of many systems from areas such
as mechanics, electrodynamics, and astrophysics. However, the familiar Lotka-Volterra equations have a conserved
quantity that involves logarithms of the state variables, and so is an example in which the Midpoint method cannot
guarantee conservation.

While it seems natural to concentrate on accuracy or precision in an ODE solver, the example of the motion on
a sphere may suggest why conservation is sometimes also a vital property. For a long term calculation, an accurate
method may give us a solution that is “very close” to the true answer, but which unrealistically has left the surface
of the sphere. A conservative solver may produce a solution that is further from the true solution, but which remains

7



on the sphere. It depends on the user’s interest to decide which of these two solutions is actually furthest from “the
truth”.
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