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Abstract

This report studies an abstract approach to modeling the motion of large eddies in a turbulent
flow. If the Navier-Stokes equations (NSE) are averaged with a local, spatial convolution type
filter, φ = gδ ∗ φ, the resulting system is not closed due to the filtered nonlinear term uu. An
approximate deconvolution operator D is a bounded linear operator which is an approximate
filter inverse

D(u) = approximation of u.

Using this general deconvolution operator yields the closure approximation to the filtered non-
linear term in the NSE

uu ' D(u)D(u).

Averaging the Navier-Stokes equations using the above closure, possible including a time relax-
ation term to damp unresolved scales, yields the approximate deconvolution model (ADM)

wt +∇ ·D(w) D(w)− ν4w +∇q + χw∗ = f and ∇ ·w = 0.

Here w ' u, χ ≥ 0, and w∗ is a generalized fluctuation. We derive conditions on the general
deconvolution operator D that guarantee the existence and uniqueness of strong solutions of
the model. We also derive the model’s energy balance.

1 Introduction

Many approaches have been used to simulate turbulent flows. In large eddy simulation (LES) the
evolution of averages is sought. These averages are defined through a local spatial averaging process
associated with an averaging radius δ. Once an averaging radius and a filtering process is selected, an
LES model can be developed and then solved numerically. One of the most interesting approaches
to generate LES model is via approximate deconvolution or approximate/asymptotic inverse of
the filtering operator. Approximate deconvolution models (ADM) are systematic (rather than ad
hoc). They can achieve high theoretical accuracy and shine in practical tests; they contain few or no
fitting/tuning parameters. The ADM approach has thus proven itself to be very promising. However,
among the very many known approximate deconvolution operators from image processing, e.g. [2],
so far only two have been studied for LES modeling, the van Cittert deconvolution operator and
Geurts’ approximate inverse filter. Their success suggest that it is time to develop a general theory
of LES-ADM as a guide to development of models based on other, possibly better, deconvolution
operators and refinement of existing ones.

Two basic requirements of an acceptable ADM are that a unique, strong solution exists and that
the model’s global energy balance be close in some sense to that of the NSE. Herein, we consider
these two important questions. We find, in Section 3 (see P1, P2, and P3), conditions on the
approximate deconvolution operator D that guarantee that the ADM has a unique strong solution.
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In Section 4 (see Theorem 4.2), we derive the model’s energy balance and show that under these
conditions on the deconvolution operator the model correctly captures the global energy balance of
the large scales.

The underlying fluid velocity u(x,t) and pressure p(x,t) are solutions of the Navier-Stokes equa-
tions (NSE):

ut + u · ∇u− ν4u +∇p = f and ∇ · u = 0 in Rn, (1.1)

where ν = µ/ρ is the kinematic viscosity, f is the body force, and Rn ( n = 2 or 3) is the flow
domain. We consider L-periodic boundary conditions to separate the interior closure problem from
other important problems associated with filtering through a boundary, [4] and finding boundary
conditions for local averages (near wall laws), [11],

u(x + Lej , t) = u(x, t), j = 1, ..., n.

The Navier-Stokes equations are supplemented by the initial condition, the usual normalization
condition in the periodic case of zero mean velocity and pressure, and the assumption that all data
are square integrable with zero mean

u(x, 0) = u0(x) and
∫
Q

u dx =
∫
Q

p dx = 0,∫
Q

|u0(x, t)|2dx <∞,
∫
Q

|f(x, t)|2dx <∞, and
∫
Q

f(x, t)dx = 0, for 0 ≤ t, (1.2)

where Q = (0, L)n. Let overbar denote a local, spatial averaging operator, such as averaging by
convolution, that is linear and commutes with differentiation. Averaging the NSE, the (non-closed)
equations for u and p, known as the Space Filtered Navier-Stokes equations (SFNSE), are

ut +∇ · (u u)− ν4u +∇p = f and ∇ · u = 0. (1.3)

Since in general uu 6= u u, the closure problem is to replace uu by a tensor S(u,u) depending only
on u, not on u. If we denote filtering by u = Gu and D is an approximate inverse of G (so u ∼= Du),
then the variant of approximate deconvolution model we consider herein approximates

uu ∼= D(u)D(u) =: S(u,u).

The deconvolution problem is central in image processing, [2]. Thus many algorithms can be
adapted to give a possible LES closure model. The goal of deconvolution in LES is to recover
accurately the resolved scales asymptotically as δ → 0. The resulting LES model should have a lucid
energy balance and favorable properties for its approximate solution. As an example, the N th van
Cittert approximate deconvolution operator DN , defined precisely in Section 5, see also [1], [6], [14],
is an easy to construct bounded linear operator on L2(Q) satisfying

φ = DN (φ) +O(δ2N+2), for smooth φ.

In other words, DN is an asymptotic (as δ → 0) approximate inverse of G. With the van Cittert
approximate deconvolution operator, the closure problem in (1.3) can be solved approximately but
systematically by:

u u ' DN (u) DN (u) +O(δ2N+2), for smooth u.

More generally and beyond the van Cittert operator, there is little analytical guidance as to the
properties needed of a deconvolution operator to produce a reliable LES model. Since inverting a
filter is an ill-posed problem, a deconvolution operator can also be generated by any method for
solving approximately ill-posed problems. Thus, there are many possible choices of D available.
Once D is selected, we define the higher order fluctuation w∗ = w−D(w), if I −DG is symmetric
positive semi-definite and w∗ = (I −DG)∗(I −DG)w otherwise.
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In general, any approximate deconvolution operator D, used as a closure approximation, leads
to the approximate deconvolution LES model

wt +∇ ·D(w) D(w)− ν4w +∇q + χw∗ = f

∇ ·w = 0 (1.4)
w|t=0 = u0∫
Q

qdx = 0.

The time relaxation term χw∗, where χ ≥ 0 is a model parameter, is often included in the ADM to
damp marginally resolved scales, see [19] and [16], so we include it in our analysis.

If D is a symmetric positive definite operator then it induces a deconvolution weighted L2 inner
product and norm defined by (u,v)D :=

∫
Q

u · D(v)dx and ||v||2D = (v,v)D. For specificity, we
select the filtering operation v := (I − δ24)−1v.

In Sections 3 and 4 we show that if the deconvolution operator D : L2(Q)→ L2(Q) is a bounded,
self adjoint, and positive definite operator that commutes with differentiation, then a weak solution
exists for the deconvolution model (1.4). In Section 5 we show that the weak solution is a unique
strong solution and satisfies the energy equality:

1
2
||w(t)||2D +

δ2

2
||∇w(t)||2D +

∫ t

0

(
ν||∇w||2D + νδ2||4w||2D + χ(w∗, (I − δ24)w)D

)
dτ

=
∫ t

0

(f ,w)Ddτ +
1
2
(
||w(0)||2D + δ2||∇w(0)||2D

)
. (1.5)

Remark 1.1. [ An Important Difference Between Deconvolution Models ] The SFNSE can be rewrit-
ten as

ut + u · ∇u− ν4u +∇p+∇ · (uu− u u) = f .

Another possible deconvolution LES model approximates

uu− u u = D(u) D(u)−D(u) D(u).

In the simplest case (D = I) this is the Bardina model

wt + w · ∇w − ν4w +∇q +∇ · (ww −w w) = f . (1.6)

This common approach is NOT covered by the theory herein. In fact, we believe (but cannot prove
yet) that this approach can be unstable, unless sufficient ad hoc eddy viscosity is added (thereby
destroying the high accuracy of the ADM approach). We therefore have a strong preference for
the simpler, accurate, and unconditionally stable model (1.4) over the similarity type deconvolution
model (1.6).

2 Preliminaries, Notations, and Function Spaces

We start by briefly reviewing the concept of averaging/filtering in LES and define the function
spaces and the norms needed for the variational formulation of the scale similarity model.

2.1 Averaging operators used in LES

The idea of LES is to split the velocity into u = u + u′ a local, spatial average u and a fluctuation
about the mean u′. It is widely believed that given the random and chaotic character of the
fluctuations, their average effects on the mean motion can successfully be modeled and thus the
mean can be predicted accurately. The mean is defined by filtering or mollification (convolution
with an approximate identity). The goal is to predict the mean accurately. Let g(·) denote a filter,
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such as the Gaussian filter g(x) = 6
π e
−6|x|2 , and let δ denote the selected averaging radius. Define

gδ(x) := δ−3g(x/δ). Averages are defined by convolution with the kernel g(·). Given a velocity u,
its mean u and fluctuation u′ are defined by u = Gu and u′ = u− u when

u(x) :=
∫
R3
gδ(x− x′)u(x′)dx′. (2.1)

Typical choices used in LES include the top-hat filter, sharp spectral cut-off, the Gaussian filter and
differential filters, defined next, which also fit into the convolution formalism.

Definition 2.1. [ Differential Filter ] Let A := −δ24 + I and let ϕ denote the unique L-periodic
solution in Q of:

Aϕ := −δ24ϕ+ϕ = ϕ. (2.2)

Remark 2.1. Under periodic boundary conditions and for constant δ both (2.1) and (2.2) commute
with differentiation, preserve incompressibility, and can be written as convolution with approximate
identity.

Differential filters are well-established in LES, starting with the work of Germano [11] and con-
tinuing with [10], [18]. They have many connections to regularization processes such as the Yoshida
regularization of semigroups and the very interesting work of Foias, Holm, Titi [7] (and others) on
Lagrange averaging of the Navier-Stokes equations.

The mean u(x) is the weighted average of u about the point x. As δ → 0, the points near x are
weighted more and more heavily, so intuitively we expect that u → u as δ → 0. This is known for
convolution filters. For differential filters, it is also not difficult to show.

Remark 2.2. Expanding the velocity u in Fourier series we obtain

u(x) =
∑
k

û(k)e−ik·x where k is the wave number vector and k =
2πn
L

, for n ∈ Z3.

Let k = |k| =
√
k2
1 + k2

2 + k2
3 be its magnitude. The Fourier coefficients are

û(k) =
1
L3

∫
Q

u(x)e−ik·xdx.

Parseval’s equality leads to

1
L3

∫
Q

|u(x)|2dx =
∑
k

|û(k)|2 =
∑
k

∑
|k|=k

|û(k)|2.

Lemma 2.1. Let u = (−δ24+ I)−1u. Then for any u ∈ L2(Q)

u→ u in L2(Q) as δ → 0.

Proof. Given ε > 0, we show that for δ small enough ||u− u|| < ε.
Indeed, using Parseval’s equality, as in Remark 2.2, we obtain

||u− u||2 =
∑
k

∑
|k|=k

∣∣∣∣1− 1
δ2k2 + 1

∣∣∣∣ |û(k)|2 =
∑
k

∑
|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2

and for any positive integer M we can write

||u− u||2 =
∑

0<k≤M

∑
|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 +

∑
k>M

∑
|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2.
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Furthermore, we have ∑
|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 ≤

∑
|k|=k

|û(k)|2

and thus, for M large enough ∑
0<k≤M

∑
|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 < ε

2
. (2.3)

For this M we have ∑
k>M

∑
|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 ≤ δ2M2

1 + δ2M2
||u||2 (2.4)

<
ε

2
, for some δ = δ(M).

From (2.3) and (2.4) the conclusion follows.

2.2 Function Spaces, Weak and Strong Solution

The notation for the function spaces we are using follows Temam, [20] and Layton and Lewandowski
[15]. Let || · || represent the L2 norm. For k ≥ 1, let V k#(Q) denote the space of all [0, L]3-periodic
functions with restriction on the cell Q = (0, L)3 in the Sobolev space Hk(Q). Thus

V k#(Q) =
{

u ∈ Hk
loc(Q)| u is L-periodic

}
.

We denote by || · ||V k
#(Q) the associated norm:

||ϕ||V k
#

(Q) =
k∑
j=0

(∫
Q

|∇jϕ(x)|2dx
)1/2

, for all ϕ ∈ V k#(Q).

For the variational formulation of the approximate deconvolution model, we consider the spaces of
periodic, divergence-free functions:

V
k

#(Q) =
{

u ∈ V k#(Q)| ∇ · u = 0
}

H =
{

u ∈ L2(Q)| u is L-periodic and ∇ · u = 0
}

and

V =
{

u ∈ H1(Q)| ∇ · u = 0
}
.

Further, we define

D(Q) =
{
ψ ∈ C∞(Q)| ψ is L-periodic, has compact support and

∫
Q

ψdx = 0
}

DT (Q) =
{
ψ ∈ C∞ ([0, T )×Q) | ψ(·, t) is L-periodic, has compact support and

∫
Q

ψdx = 0
}
.

Definition 2.2. Let D be a symmetric, positive definite and bounded operator on L2(Q). The D
inner product and norm on L2(Q) are (φ,ψ)D :=

∫
Q
φ ·D(ψ)dx and

||φ||2D = (φ,φ)D, for every φ ∈ L2(Q).
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Definition 2.3. Let D and G be bounded operators on L2(Q). We define

φ∗ :=
{

(I −DG) φ, if I −DG is symmetric positive semi-definite
(I −DG)∗(I −DG) φ, otherwise.

The ∗ semi-inner product and semi-norm on L2(Q) are (φ,ψ)∗ := (φ∗,ψ) and

||φ||2∗ = (φ,φ)∗, for every φ ∈ L2(Q).

To make progress in the mathematical understanding of an LES model the key idea is the
notion of weak solution. For the NSE the notion of weak solution was introduced by Leray, [13]. We
now introduce the notion of weak solution for the ADM (1.4).

Definition 2.4. Let f ∈ L2(0, T ;V ′) and w0 ∈ V
1

#(Q). A function w : Q× [0, T ] → Rn is a weak
solution of (1.4) if

w ∈ L2
(

0, T ;V
2

#(Q)
)
∩ L∞ (0, T ;H) (2.5)

and

(w(T ),ϕ(T )) −
∫ T

0

[(
w,

∂ϕ

∂t

)
− ν(∇w,∇ϕ)−

(
∇ ·D(w)D(w),ϕ

)
− χ(w∗,ϕ)

]
dt

=
∫ T

0

(f ,ϕ)dt+ (w0,ϕ(0)) (2.6)

for all ϕ ∈ D(QT ).

Definition 2.5. The pair (w, q) is a strong solution of the deconvolution model (1.4) if w is a weak
solution and

w ∈ V 2

#(Q) ∩H, for a.e. t ∈ [0, T ]

w ∈ V 1

#([0, T ]), for a.e. x ∈ Q (2.7)

q ∈ V 1

#(Q) ∩ L2
0(Q), for a.e. t ∈ (0, T ].

Remark 2.3. Because the inclusion V 2
#(Q) → H is compact, the inverse of the Stokes operator

is bounded, self-adjoint, and compact. This implies that there exists an orthonormal basis of H
consisting of eigenfunctions of the Stokes operator.

3 Existence of Weak Solutions of Approximate Deconvolu-
tion Models

Due to the nonlinearity in (1.4) small changes in the deconvolution operator can yield significant
(positive or negative) changes in the solution of the induced model. The averaging/convolution
operator G is bounded, self-adjoint, positive definite and commutes with differentiation. We thus
postulate that deconvolution operator D, its approximate inverse, is also bounded, self-adjoint,
positive definite and commutes with differentiation. We postulate the following properties of the
deconvolution operator D:

P1. D is a bounded linear operator on L2(Q),
P2. D is self-adjoint and positive definite,
P3. D commutes with differentiation.

Note that P1, P2, and P3 imply in particular that the D norm and the L2 norm are equivalent on
L2(Q), i.e. there exist two positive constants C1 and C2 such that

C1||ϕ|| ≤ ||ϕ||D ≤ C2||ϕ||, for all ϕ ∈ L2(Q).
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Remark 3.1. Let {ψj} be eigenfunctions of the Stokes operator in H. Then, due to the peri-
odic boundary conditions, span{ψj}j is invariant under the Stokes operator and any other constant
coefficient differential operators. By P3, it is also invariant under D.

Under postulates P1, P2, and P3 on the deconvolution operator D, we prove that the ADM model
(1.4) admits weak solutions, in the sense of the Definition 2.4. We follow the exposition on the
existence of the weak solutions of the NSE, in Galdi [8]. The analysis includes the case χ = 0 of no
time relaxation.

Theorem 3.1. Let T > 0 and D be a deconvolution operator satisfying the properties P1, P2, and
P3. For w0 ∈ V

1

#(Q)∩H and f ∈ L2(0, T ;V ′), there exists a weak solution w ∈ L2
(

0, T ;V
2

#(Q)
)
∩

L∞(0, T ;H) of (1.4) in the sense of the Definition 2.4. Moreover, for any t ∈ (0, T ], the following
stability bound holds:

1
2
||w(t)||2 +

1
2
δ2||∇w(t)||2 + ν

∫ t

0

(
||∇w(τ)||2 + δ2||4w(τ)||2

)
dτ

≤ C
(∫ t

0

||f(τ)||2dτ + ||w(0)||2 + δ2||∇w(0)||2
)
. (3.1)

Proof. Let {ψj} ∈ D(Q) be an orthonormal basis of H consisting of eigenfunctions of the Stokes
operator, as in Remark 2.3. We are looking for Galerkin approximate solutions of the form:

wk(x, t) =
k∑
r=1

ηkr(t)ψr(x), for k ∈ N. (3.2)

Since (∇p,ψj) = −(p,∇ ·ψj) = 0 for j = 1, ..., k, the functions {wk}k satisfy the ODE system:(
∂wk

∂t
,ψj

)
+ ν

(
∇wk,∇ψj

)
+
(
∇ ·D(wk)D(wk),ψj

)
=

(
f ,ψj

)
(3.3)(

wk(0),ψj
)

= (w0,ψj), (3.4)

for all j = 1, ..., k. Using (3.2) in (3.3) and (3.4) it follows that

k∑
r=1

∂ηkr
∂t

(ψr,ψj) + ν

k∑
r=1

ηkr(∇ψr,∇ψj) +
k∑

r,i=1

ηkrηki

(
∇ ·D(ψr)D(ψi),ψj

)
=
(
f ,ψj

)
(3.5)

k∑
r=1

ηkr(0)
(
ψr,ψj

)
=
(
w0,ψj

)
(3.6)

for all j = 1, ..., k. For simplification, let arj = (∇ψr,∇ψj), arij =
(
∇ ·D(ψr)D(ψi),ψj

)
, fj =(

f ,ψj
)

and c0j = (w0,ψj). With these and since (ψi,ψj) = δij , equations (3.5) and (3.6) become

∂ηkj
∂t

+ ν

k∑
r=1

arjηkr +
k∑

r,i=1

arijηkrηki = fj (3.7)

ηkj(0) = c0j . (3.8)

for j = 1, ..., k. Since fj ∈ L2(0, T ), for j = 1, ..., k from the theory of ODEs we know that the
problem (3.7)-(3.8) has a unique solution ηkj ∈ W 1,2(0, Tk), for a small enough time interval Tk ≤
T .

Because w0 ∈ V
1

#(Q) ∩H, there exists u0 ∈ H such that u0 = w0 and:

(w0,ψj) = (u0,ψj), j = 1, ..., k. (3.9)
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From Remark 3.1, span{ψj}j is invariant under the Stokes and differential operators. In particular
span{ψj}j is invariant under the deconvolution operator D and (−δ24+I). Since D(wk) is a linear
combination of {ψj} we deduce that D(wk) ∈ span {ψj}j and (−δ24+ I)wk(0) ∈ span{ψj}j . So,
we can use (−δ24+ I) wk(0) as test function in (3.9).(

wk(0), (−δ24+ I)wk(0)
)

=
(
u0, (−δ24+ I)wk(0)

)
= (u0,wk(0)). (3.10)

Thus, ||wk(0)||2+δ2||∇wk(0)||2 ≤ 1
2

(
||u0||2 + ||wk(0)||2

)
and we have the following à priori estimate

1
2
||wk(0)||2 + δ2||∇wk(0)||2 ≤ 1

2
||u0||2. (3.11)

Further, in (3.3) we can replace ψj by (I−δ24)D(wk) ∈ span {ψj}j . Since (I−δ24) is symmetric,
the nonlinear term vanishes:(

∇ ·D(wk)D(wk),
(
I − δ24

)
D(wk)

)
= (∇ ·D(wk)D(wk), D(wk)) = 0

and (3.3) becomes(
∂wk

∂t
, (I − δ24)D(wk)

)
+ ν

(
∇wk,∇(I − δ24)D(wk)

)
= (f , D(wk)) .

Applying properties P1, P2, and P3 of D, and integrating between 0 and t we are led to

1
2
||wk(t)||2D +

1
2
δ2||∇wk(t)||2D + ν

∫ t

0

(
||∇wk(τ)||2D + δ2||4wk(τ)||2D

)
dτ

=
∫ t

0

(f , Dwk(τ))dτ +
1
2
||wk(0)||2D +

1
2
δ2||∇wk(0)||2D. (3.12)

Moreover, since the D-norm and the L2-norm are equivalent on L2(Q) there exists a constant C
such that

1
2
||wk(t)||2 +

1
2
δ2||∇wk(t)||2 + ν

∫ t

0

(
||∇wk(τ)||2 + δ2||4wk(τ)||2

)
dτ

≤ C
(∫ t

0

||f ||2dτ +
∫ t

0

||wk(τ)||2dτ + ||wk(0)||2 + δ2||∇wk(0)||2
)
. (3.13)

Gronwall’s inequality in (3.13) implies that for all t ∈ (0, T ]

1
2
||wk(t)||2 +

1
2
δ2||∇wk(t)||2 + ν

∫ t

0

(
||∇wk(τ)||2 + δ2||4wk(τ)||2

)
dτ

≤ Cet
(∫ t

0

||f ||2dτ + ||wk(0)||2 + δ2||∇wk(0)||2
)
. (3.14)

Also, for all t ∈ (0, T ] we have that

et
(∫ t

0

||f ||2dτ + ||wk(0)||2 + δ2||∇wk(0)||2
)
≤ CeT

(∫ T

0

||f ||2dτ + ||wk(0)||2 + δ2||∇wk(0)||2
)
.

Let M := eT
(∫ T

0
||f ||2dτ + ||wk(0)||2 + δ2||∇wk(0)||2

)
, so that M is a constant independent of t

and k. In particular, from (3.14) we deduce

||wk(t)|| ≤M1/2. (3.15)

Using the definition of the L2-norm and (3.2) we get ||wk(t)||2 = (wk(t),wk(t)) =
∑k
r=1 η

2
kr(t).

Thus

|ηkr(t)| ≤

(
k∑
r=1

η2
kr(t)

)1/2

= ||wk(t)|| ≤M1/2.
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We already know that Tk ≤ T . The à priori bound (3.15) shows that we cannot have Tk < T , since
it would imply |ηkr(t)| is unbounded as t → Tk, for some r ∈ {1, ..., k}. This shows Tk = T , for all
k ∈ N.

Next, we investigate the properties of convergence of {wk} as k → ∞. To begin, let j be fixed
but arbitrary. Define the sequence {Nk(t)}k, where

Nk(t) = (wk(t),ψj), for t ∈ (0, T ].

We shall first show that the sequence so defined satisfies the properties

1. {Nk(t)}k is uniformly bounded,

2. {Nk(t)}k is equicontinuous.

The first property follows from ||ψj || = 1, the Cauchy- Schwarz inequality, and (3.15).

|Nk(t)| ≤ ||wk(t)|| ||ψj || ≤ M1/2.

To prove the second, let us note that for every t and s in (0, T )

|Nk(t)−Nk(s)| =
∣∣(wk(t)−wk(s),ψj

)∣∣ =

∣∣∣∣∣
k∑
r=1

(ηkr(t)− ηkr(s)) (ψr,ψj)

∣∣∣∣∣ .
Integrating between 0 and t in (3.7) we first obtain that the coefficients ηkr satisfy the equation

ηkj(t) = ηkj(0) +
∫ t

0

(fj − ν
k∑
r=1

arjηkr −
k∑

n,i=1

arijηkrηki)dτ (3.16)

and thus

Nk(t)−Nk(s) =
∫ t

s

(f ,ψj)dτ − ν
∫ t

s

(∇wk,∇ψj)dτ −
∫ t

s

(∇ ·D(wk)D(wk),ψj)dτ. (3.17)

Using the Cauchy- Schwarz inequality and the orthogonality of
{
ψj
}

, we can bound each term

(f ,ψj) ≤ ||f || ||ψj || = ||f ||, (∇wk,∇ψj) ≤ ||∇ wk|| ||∇ψj ||
(∇ ·D(wk)D(wk),ψj) =

(
D(wk)∇ ·D(wk),ψj

)
≤ C(||D||) max

j
|ψj | ||wk|| ||∇wk||

≤ C(||D||) M1/2 max
j
|ψj | ||∇wk||.

Putting everything together and letting K1 = ν||∇ψj || and K2 = maxj |ψj | we have

|Nk(t)−Nk(s)| ≤
∫ t

s

(
||f ||+K1||∇wk||+K2M

1/2||∇wk||
)
dτ. (3.18)

Further more, Cauchy-Schwarz inequality in time gives:

|Nk(t)−Nk(s)| ≤
√
|t− s|

{
||f ||2L2(s,t;L2(Q)) +

(
K1 +K2M

1/2
)
||∇wk||2L2(s,t;L2(Q))

}
. (3.19)

Finally, since f ∈ L2(0, T ;V ′) and since ||∇wk||2L2(s,t;L2(Q)) ≤ ||∇wk||2L2(0,T ;L2(Q)) for any T > 0,
our argument is over and {Nk(t)}k is equicontinuous.

By the Arzela-Ascoli Theorem, from {Nk(t)} we may select a subsequence, which we redenote
by {Nk(t)} uniformly convergent to a continuous function N(t), i.e:

(wk(t),ψj)→ N(t) uniformly in t. (3.20)
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Since the estimate (3.15) is independent of t, we obtain that {wk} is a bounded sequence in
L∞(0, T ;H). By the weak compactness of L∞(0, T ;H) it follows that there exists a convergent
subsequence of {wk} in L∞(0, T ;H). If we redenote the convergent subsequence by {wk} we obtain
that there exists w(t) in H such that

(wk(t),ψj)→ (w(t),ψj) uniformly in t. (3.21)

From (3.20) and (3.21) follows that

V (t) = (w(t),ψj), for all t ∈ (0, T ].

Using (3.13), we deduce that {wk} is a bounded sequence in L2(0, T ;V
2

#(Q)). By the weak compact-

ness of L2(0, T ;V
2

#(Q)), there exists a convergent subsequence of {wk} in L2(0, T ;V
2

#(Q)). Again,

if we redenote the convergent subsequence by {wk}, then there exists w′(t) ∈ V 2

#(Q) such that

(wk(t),v(t))→ (w′(t),v(t)) uniformily in (0, T ], for all j ∈ N (3.22)

and for all v ∈ V 2

#(Q). However, V
2

#(Q) ⊂ H. Uniqueness of the limit of a sequence together with
(3.21) and (3.22) yield that w(t) = w′(t).

It means that w ∈ L2(0, T ;V
2

#(Q)) ∩ L∞(0, T ;H). This implies that along a subsequence

wk → w in L2(0, T, L2(Q))
∇wk → ∇w in L2(0, T, L2(Q)). (3.23)

To prove (3.1) we replace ψj by (I − δ24)ψj in (3.13) and let k →∞. The nonlinear term gives∫ T

0

(
∇ ·D(wk)D(wk), (I − δ24)ψj

)
dτ −

∫ T

0

(
∇ ·D(w)D(w), (I − δ24)ψj

)
dτ

=
∫ T

0

(
∇ ·D(wk)D(wk),ψj

)
dτ −

∫ T

0

(
∇ ·D(w)D(w),ψj

)
dτ

=
∫ T

0

(
∇ ·D(wk −w)D(wk),ψj

)
dτ −

∫ T

0

(
∇ ·D(w)D(w −wk),ψj

)
dτ

≤ C(||D||) max
j
|ψj | ||wk −w||L2(0,T,L2(Q)) ||∇wk||L2(0,T,L2(Q))

+ C(||D||) max
j
|ψj | ||∇wk −∇w||L2(0,T,L2(Q)) ||w||L2(0,T,L2(Q)),

which tends to 0 as k →∞ by (3.23). This concludes our proof.

Proposition 3.1. If w is a weak solution of the model (1.4), then

wt ∈ L2(0, T ;L2(Q)). (3.24)

Proof. By the Riesz Representation Theorem and density

||wt|| = sup
φ∈D(Q)

∫ T
0

(wt,φ)dt
||φ||

.

Let φ ∈ D(Q). Multiplying the first equation of (1.4) by φ, applying the symmetric positive definite
property of the filtering operation and the incompressibility condition we obtain

(wt,φ) = (f ,φ)− (∇ ·D(w) D(w),φ) + ν(4w,φ). (3.25)

We can bound each term in the right hand side. First, we note that Definition 2.1 leads to ||φ|| ≤
||φ||. Using the Cauchy-Schwarz inequality it follows that

(f ,φ) ≤ ||f || ||φ|| ≤ ||f || ||φ||, (3.26)
(4w,φ) ≤ ||4w|| ||φ||. (3.27)
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If we also use Ladyshenskaya’s and Poicaré’s inequalities we obtain

(∇ ·D(w) D(w),φ) ≤ C||D(w)||1/2||∇D(w)||1/2||∇D(w)|| ||∇φ||
≤ C(δ, ||D||) ||w||1/2||∇w||3/2||φ||. (3.28)

With inequalities (3.26)-(3.28) and the regularity properties of w, from (3.25) we deduce

(wt,φ) ≤ C (δ, ||D||, ||w||, ||∇w||, ||4w||) ||φ||.

Let K := C (δ, ||D||, ||w||, ||∇w||, ||4w||). Then

(wt,φ) ≤ K||φ||.

Integration in time and Cauchy-Schwarz inequality in the right hand side lead to∫ T
0

(wt,φ)dt
||φ||

≤ C(K,T ).

Now take supφ and the conclusion follows.

Remark 3.2. An important consequence of Proposition 3.1 is that

(wt,v) + (∇ ·D(w) D(w),v) + ν(∇w,∇v) = (f ,v), (3.29)

for any v ∈ L2(0, T ;L2(Q)). Indeed, since D(Q) is dense in L2(0, T ;L2(Q)), there exist a sequence
of functions {φn}n in D(Q) such that φn → w. If we multiply the first equation of (1.4) by {φn}n
and let n → ∞ we obtain (3.29), using the Proposition 3.1 to pull the limit into the first term and
the regularity proven in the Theorem 3.1 for the remaining terms.

4 ADM Energy Balance and Uniqueness

In this section we prove that the weak solution of the ADM (1.4) is a unique strong solution. We
also show that the model satisfies an energy equality rather than inequality. In our proofs we include
the case when I−DG is symmetric positive semi-definite and thus φ∗ := (I−DG)φ. First we prove
uniqueness.

Theorem 4.1. Assume that w0 ∈ H
1

#(Q) ∩H and f ∈ L2(0, T ;V ′). The weak solution of (1.4) is
unique.

Proof. By contradiction, assume that there exist two solutions (w1, q1) and (w2, q2) of (1.4). Let
φ := w2 −w1 (thus φ∗ := w∗2 −w∗1) and r := q2 − q1. Then, subtracting the weak formulations of
(w1, q1) and (w2, q2), it follows that (φ, r) is a weak solution of

φt +∇ · (D(w2)D(w2)−D(w1)D(w1))− ν4φ+∇r + χφ∗ = 0
∇ · φ = 0 (4.1)
φ(0) = 0.

subject to periodic boundary condition and zero mean. From Remark 3.2, we can multiply the first
equation of (4.1) by (I−δ24)D(φ) ∈ L2(0, T ;L2(Q)). After algebraic manipulation and integration
by parts, the nonlinear term becomes:

(∇ · (D(w2)D(w2)−D(w1)D(w1)), (I − δ24)D(φ))dx = −
∫
Q

D(φ) · ∇D(φ) ·D(w1)dx.

Since both I − DG and D are symmetric, positive semi-definite and positive definite respectively,
and all operators commute, the higher order fluctuation term is non-negative

χ (φ∗, (I − δ24)D(φ)) = χ (ψ∗,ψ) + χ ((∇ψ)∗, (∇ψ)) ≥ 0, where ψ = D1/2(φ). (4.2)
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The other terms are

(φt, (I − δ24)D(φ)) =
1
2
d

dt
(||φ||2D + δ2||∇φ||2D)

−ν (4φ, (I − δ24)D(φ)) = ν (||∇φ||2D + δ2||4φ||2D)
(∇r, (I − δ24)D(φ)) = −(r, (I − δ24)D(∇ · φ)) = 0.

Thus, we obtain

1
2
d

dt
(||φ||2D + δ2||∇φ||2D) + ν(||∇φ||2D + δ2||4φ||2D) ≤

∫
Q

D(φ) · ∇(Dφ) ·D(w1)dx. (4.3)

Next, we apply the Cauchy-Schwarz inequality in the right hand side∣∣∣∣∫
Q

D(φ) · ∇D(φ) ·D(w1)dx
∣∣∣∣ ≤ ||D(w1)||L4(Q)||D(φ)||L4(Q)||∇D(φ)||.

The Sobolev embedding theorem gives that there exists C = C(Q, f ,w0, ||D||) such that∣∣∣∣∫
Q

D(φ) · ∇D(φ) ·D(w1)dx
∣∣∣∣ ≤ C||∇φ||.

Furthermore, using the equivalence of the D and the L2 norm, there is a constant C ′ = C ′(δ) such
that

||∇φ|| ≤ C ′(||φ||2 + δ2||∇φ||2).

Putting everything together, (4.3) implies

1
2
d

dt
(||φ||2D + δ2||∇φ||2D) ≤ C ′(||φ||2 + δ2||∇φ||2) (4.4)

But, φ(0) = 0. Gronwall’s Lemma implies that φ vanishes everywhere for all t. Hence, uniqueness
follows.

Lemma 4.1. The LES ADM model (1.4) has a unique strong solution.

Proof. From the Definition 2.5, any strong solution is, in particular, a weak solution as well. From
Theorems 3.1 and 4.1 a unique weak solution exists. Remark 3.2 shows that this weak solution is
also a strong solution.

Theorem 4.2. Let w be the unique strong solution of (1.4). Then w satisfies the energy equality:

1
2
(
||w(t)||2D + δ2||∇w(t)||2D

)
+ ν

∫ t

0

(
||∇w(τ)||2D + δ2||4w(τ)||2D

)
dτ

+χ
∫ t

0

(
w∗(τ), (−δ24+ I)Dw(τ)

)
dτ =

∫ t

0

(f ,w(τ))Ddτ +
1
2
(
||w(0)||2D + δ2||∇w(0)||2D

)
, (4.5)

for all t ∈ (0, T ].

Proof. Multiply the first equation of (1.4) by the test function (−δ24 + I)D(w). The nonlinear
term vanishes because:(

∇ ·D(w)D(w), (I − δ24)D(w)
)

= (∇ ·D(w)D(w), D(w)) = 0

Rewriting, we obtain:(
wt, (I − δ24)D(w)

)
−ν

(
4w, (I − δ24)D(w)

)
+χ

(
w∗, (−δ24+ I)D(w)

)
=
(
f , (I − δ24)D(w)

)
.

(4.6)
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We have: (
wt, (I − δ24)D(wk)

)
=

1
2
d

dt

(
||w||2D + δ2||∇w||2D

)
−ν(4w, (I − δ24)D(wk)) = ν

(
||∇w||2D + δ2||4w||2D

)
(4.7)

(f , (I − δ24)D(w)) = (f , D(w)).

Replacing (4.7) in (4.6) and integrating between 0 and t we obtain (4.5), for all t ∈ (0, T ].

Remark 4.1. In Theorem 4.2,

the kinetic energy of the model =
1
2
(
||w(t)||2D + δ2||∇w(t)||2D

)
,

total energy dissipation =
∫ t

0

[
ν
(
||∇w(τ)||2D + δ2||4w(τ)||2D

)
+ χ

(
w∗(τ), (−δ24+ I)w(τ)

)
D

]
dτ,

the initial kinetic energy of the model =
1
2
(
||w(0)||2D + δ2||∇w(0)||2D

)
,

total energy input by the body force f =
∫ t

0

(f ,w(τ))Ddτ.

Thus Theorem 4.2 means that the kinetic energy of the model + total energy dissipation = the initial
kinetic energy of the model + total energy input by the body force f .

5 Examples of Deconvolution Operators and their properties

The basic problem in deconvolution is: given u + noise find u approximately. In other words

given u solve Gu = u for u. (5.1)

Many averaging operators G are symmetric and positive semi-definite. If the averaging operator is
smoothing, the deconvolution problem will be not stably invertible due to small divisor problems.
With these constraints in mind we review a few examples of deconvolution operators and their
properties. In this section we consider the filtering operation be given by (2.1).

1. The van Cittert deconvolution operator.

The van Cittert method of approximate deconvolution, see [2], constructs a family DN of
inverses to G using N steps of fixed point iterations.

Algorithm 5.1. [van Cittert Algorithm]: Choose

u0 = u.

For n = 0, 1, 2, ..., N − 1 perform

un+1 = un + {u−Gun}.

Set DNu := uN .

A very detailed mathematical theory of the van Cittert deconvolution operator and resulting
approximate deconvolution models are already known, see [1], [3], [15], [5] and [6]. We point out
the following lemma, proved in [6], concerned with properties of the approximate deconvolution
operator DN .

Lemma 5.1. The operator DN : L2(Q)→ L2(Q) is bounded, symmetric and positive definite.

Proof. For the proof see [ [6], Lemma 2.1].
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2. The Accelerated van Cittert deconvolution operator.

In our second example, approximations to u are obtained via the algorithm defined below.

Algorithm 5.2. [Accelerated van Cittert Algorithm]: Given relaxation parameters ωn, choose

u0 = u.

For n = 0, 1, 2, ..., N − 1 perform

un+1 = un + ωn{u−Gun}.

Set Dω
Nu := uN .

Proposition 5.1. Let the averaging operator be the differential filter Gϕ := (−δ24+ I)−1ϕ.
If the relaxation parameters ωi are positive, for i = 0, 1, ..., N , then the Accelerated van Cittert
deconvolution operator Dω

N : L2(Q)→ L2(Q) is symmetric positive definite.

Proof. The proof follows from [[17], Lemma 3.2].

3. Tichonov regularization deconvolution operator.

Our third example is the Tichonov regularization deconvolution operator. More precisely, since
G := (−δ24 + I)−1 is symmetric positive-definite, given u and µ > 0 small, an approximate
solution to the deconvolution problem (5.1) can be calculated as the unique minimizer in L2(Q)
of the functional

Fµ(v) =
1
2

(Gv,v)− (u,v) +
µ

2
(v,v).

The resulting family of Tichonov regularization deconvolution operators is

Dµ = lim
µ→0

(G+ µI)−1 (5.2)

and the approximate solution of (5.1) is uµ = limµ→0(G + µI)−1u. The family of operators
Dµ has the following properties, see [2]

1. for any µ > 0, Dµ is a bounded linear operator,

2. limµ→0Dµϕ = ϕ for all ϕ ∈ L2(Q).

Proposition 5.2. Let the averaging operator be the differential filter Gϕ := (−δ24+ I)−1ϕ.
Let µ > 0 be fixed. The operator Dµ : L2(Q) → L2(Q) is a bounded self-adjoint and positive
definite.

Proof. Remark that G is a linear, self-adjoint positive definite operator. Since Dµ is a function
of G and the identity operator I, it is also linear and self-adjoint . The Spectral Mapping
Theorem implies that the eigenvalues of Dµ are given by λ(Dµ) = (λ(G) + µI)−1

.

Since ||G|| ≤ 1, see [6], we have that the eigenvalues of Dµ are strictly positive and

0 <
1
µ
≤ λ(Dµ) ≤ 1

1 + µ
<∞, for µ > 0. (5.3)

Thus Dµ is also bounded and positive definite.

4. Geurts’ approximate filter inverse. One of the first studies of deconvolution as a basis for
LES models was done by Geurts in [9]. Let φ be the top hat filter, φ(x) = 1

2δ

∫ x+δ
x−δ φ(x′)dx′.

Briefly, he developed approximate inverse of the top-hat convolution filter,

Dφ :=
∫ x+δ

x−δ
d (x− x′)φ(x′)dx′,
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based on exactness of polynomials of degree ≤ µ. If Πµ = {p(x) : p(x) = a0 + a1x+ ...+ aµx
µ}

the criteria that determined the deconvolution kernel d was

DGφ = φ, for all φ ∈ Πµ. (5.4)

In 1D (in multiple dimension extension is by tensor product), the top-hat filter, g(·) has the
special property that

g ? { polynomial of degree ≤ µ} = { polynomial of degree ≤ µ}.

Using this property, for L ≥ 0, let

d(x) =
{
d0 + d1x+ ...+ d2Lx

2L, if |x| ≤ 2π
0, if |x| > 2π.

On [−π, π] the coefficients d0, d1, ..., d2L are uniquely determined by exactness of polynomials
of degree ≤ 2L+ 1.

d ? g ? xl = xl, l = 0, 1, ..., 2L+1. (5.5)

The deconvolution operator Dφ = d ? φ is self adjoint, commutes with G. The theoretical
development in [9] and associated test suggests that D satisfies:

||DGφ− φ|| ≤ C(φ)δ2L+1 for smooth φ

||D||L(L2→L2) ≤ C(δ, L) <∞.

The deconvolution operator DL are tabulated for L = 0, 1, 2, 3 in Geurts [[9], Table 1]. The top-
hat filter, and thus the associated deconvolution operator, is important in many applications,
but it is not clear if or how the theory developed herein could be extended to it. This is
because ĝ(k) = sin(kδ/2)/(kδ/2), both changes sign and has zeros. At this point it appears
to be an interesting and important open question to extend Geurts construction to the other
filters, such as the Gaussian. (Extension to dynamic inverse models has been done in [12].)

5. A variation of the Geurts’ Approximate Filter Inverse, [9]. The construction of Geurts
[9], can be modified so as to fit in the theory herein. Indeed, first we shall interpret the
construction in wave number space. With the differential filter ĝ(δk) = 1

δ2|k|2+1 we have
|ĝ(k)| → 0 as |k| → ∞, since the filtering is smoothing. High order accuracy on the large
scales means exactness on the high degree polynomials on x, (i.e. Guerts condition (5.4)) and,
equivalently, high order contact of d̂(k) to 1

ĝ(k) at k = 0. Since the convolution should be

a bounded operator and d̂(0) = 1 we can pose the problem seeking a rational deconvolution
kernel

d̂(k) =
1 + n1k + ...+ nlk

l

1 + b1k + ...+ blkl
, bl 6= 0.

Then the accuracy conditions are

d̂(0) = 1 satisfied by the choice of the 0th coefficients n0 and b0

dm

dkm
d̂(k)

∣∣∣∣
k=0

=
dm

dkm
1

â(k)

∣∣∣∣
k=0

, m = 1, 2, ..., µ.

If, additionally,

1 + b1k + ...+ blk
l 6= 0, for all k ∈ R

d̂(k) > 0, for all k ∈ R,

then the deconvolution operator satisfies the conditions of the theory.
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6. Not all deconvolution operators used in image processing satisfy P1,P2, and P3 above. Direct
deconvolution, D = −δ24+I is not bounded and thus not satisfying P1. The Accelerated
van Cittert with negative relaxation parameters is not positive definite, violating P2.
The resulting deconvolution operator is not positive definite. Furthermore, there are very
many iterative methods, such as steepest descent and the conjugate gradient method, that can
be truncated to give deconvolution operators. However these often produce approximations to
u which depend nonlinearly on u. Thus, the resulting approximate deconvolution operators
are nonlinear, violating P1 .

6 Extension to other filters and Conclusions

When developing a mathematical foundation of an LES model, the first analytical problem that
arises is existence of solutions of the model. We developed a general theory about existence of
solutions of deconvolution models. The averaging operator chosen was a specific differential filter.
More generally, if the filter G satisfies ĝ(k) 6= 0 for all k, then the exact filter inverse A can be
defined as an unbounded operator with dense domain and close range. If additionally, |ĝ(k)| → 0
as k → ∞ with O( 1

|k|2 ) (or faster) then the existence theory developed herein can be extended to
the filter G. This includes the Gaussian filter, for example, but excludes the top filter and sharp
spectral cutoff.

One main result of this work is finding near minimal conditions on the deconvolution operator that
guarantee existence and uniqueness of the strong solution of a deconvolution model. We also proved
that under P1,P2, and P3 the models satisfy an energy equality, which describes the evolution of the
kinetic energy in a fluid’s flow. It is important to remark that there are many possible deconvolution
operators that don’t satisfy the conditions P1,P2, and P3.
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