
INTRODUCTION TO THE TRANSFER THEORY OF TURBULENCE

WILLIAM LAYTON∗

Abstract. This expository report considers energy transfer theory of turbulence. Analysis of
the Pao energy transfer model is given and it is verified that it is consistent with the important facets
of the 1941 theory developed by Kolomogorov of homogeneous isotropic turbulence. A connection
to shell models is noted and one implication for the Onsager conjecture about the Euler equations is
pointed out.
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1. Introduction. The basic features of the (so called) "K41" theory of homo-
geneous isotropic turbulence are that even with a smooth initial condition and input
of energy (persistently) by a smooth body force, complex flow with many scales and
irregularities develops. After either time averaging or ensemble averaging, universal
features develop. These include:

• statistical equilibrium: energy input at large scales is balanced by energy
dissipation which is quite concentrated at very small scales;

• universal energy spectrum through the inertial range: there is a wide range of
wavenumbers, called the inertial range, through which the energy in wavenum-
ber k satisfies

E(k) = 1.4(energy_dissipation_rate)2/3k−5/3;

• beyond (acting on smaller length scales than) the inertial range the dissipation
range begins. In the dissipation range E(k) decays exponentially.

• The breakpoint separating the inertial range and the dissipation range is
estimated in terms of time averaged flow quantities.

The first point is an assumption on the flow. The second point can be derived
by several different turbulent phenomenologies such as Kraichnan’s argument or even
simple dimensional analysis. The third is based on a very plausible analogy with linear
Oseen problems for which it can be proven. The last (the estimate of the Kolmogorov
microscale) is typically derived from assuming statistical equilibrium and that the
ratio of nonlinear terms to viscous term at the microscale is O(1). Each of these
universal properties is derived by different phenomenological simplifications. The
goal of energy transfer theory is to develop a single, consistent phenomenology that
explains all these points as well as giving insight into the transition between k−5/3

in the inertial range and exponential decay in the dissipation range. This report will
present energy transfer modeling of turbulence in general and the Pao energy transfer
model in particular detail. Energy transfer models are strongly related to (recently
popular) shell models. In fact, given a shell model an energy transfer model can
readily be given for which the shell model is a method of lines discretization of it.
Similarly, given an energy transfer model, discretizing the k variable yields a shell
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model. Generally1 one can organize the various competing approaches2 to prediction
of turbulence as follows.

⇑ NSE
Increasing �

⇑ LES
Accuracy �

⇑ URANS
� ⇓

RANS decreasing
� ⇓

Energy_Transfer complexity
� ⇓

Shell
Hierarchy of Models

To be more precise we must first set some notation. Universal statistical or
time averaged features of turbulence through the inertial range are described in part
through a cascade of energy. This joint cascade is described in terms of the decom-
position of time averaged (denoted by < · >, see Section 2 for a precise definition)
energy

E(t) :=
1

L3

∫

(0,L)3

1

2
|u(x, t)|2dx,

into wavenumber shells (given precisely in Section 2). This decomposition is written

< E(t) >=
∑

k≥1

E(k),

and is based on the Fourier expansion of the L periodic velocity u(x, t). The other
key parameter in the energy and cascade is the energy dissipation rate, given by

εE :=

〈
1

L3

∫

(0,L)3
ν|∇u(x, t)|2dx

〉
.

Energy is conserved by the Euler equations, broken down (on average) to smaller
and smaller scales by the NSE nonlinearity and dissipated primarily at small scales by
the viscous term. The result is a cascade of energy through a range of wave numbers
(or Fourier modes), known as the inertial range, that begins soon after the those
few largest scales at which energy is input and ends when dissipation becomes the
dominant effect. The energy cascade is well known to be

E(k) = αEε
2/3
E k−5/3, where αE = the universal Kolmogorov constant.

This description is observed in both nature and numerical experiments and predicted
by the different phenomenologies (or simplified theories) of turbulence.

1Do not put too much weight on this schematic. The field is almost as complicated as the
phenomena.

2The usual TLA’s: NSE=Navier-Stokes equations, LES= large eddy simulation, URANS= Un-
steady Reynolds averaged Navier-Stokes, and RANS= Reynolds averaged Navier Stokes.

(footnote to the footnote: TLA = three letter acronym)
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2. Decomposition of energy and into Fourier modes. Consider the Navier-
Stokes equations in a three dimensional, 2π periodic box:

ut + u · ∇u− ν△u+∇p = f and · u = 0 in (0, 2π)3 (2.1)

φ(0, t) = φ(2π, t) and

∫

Ω

φdx = 0 for φ = u, u0, f, p.

Under periodicity, the fluid velocity and its associated kinetic energy can be expanded
in Fourier series (in which the sums are over all triples of integers k =(k1, k2, k3) 
=
(0, 0, 0)3)

u(x, t) =
∑

k

û(k, t)eik·x,

E(t) =
∑

k

1

2
|û(k, t)|2.

Fourier series give a natural and often used partition of the kinetic energy into wave
numbers as follows. Define |k|2 = k21 + k22 + k23 and

E(k, t) :=
∑

k=|k|

1

2
|û(k, t)|2, so that E(t) =

∑

1≤k

E(k, t).

In this definition of E(k, t), the index k in the sum takes non integer values4 . This
will be no difficulty since transfer theories are further approximations in which k will
be a continuous variable ranging over 1 < k <∞.

Exact but non closed equations for E(k, t) can be derived in the usual way by
taking the inner product of the Navier-Stokes equations with one Fourier mode and
then summing over all modes of norm k, see Davidson [D04], Frisch [F95], or Pope
[P00] for details. This gives (using the Kronecker delta)

∂

∂t
E(k, t) +

∑

|j|=k

∑

k1

∑

k2

{
û(k1, t) · û(k2, t)⊗ k2 · û(j, t)δk1+k2,j

}
+

+2νk2E(k, t) =
∑

|j|=k

f̂(j, t) · û(j, t).

Define the (discrete) transfer functions (these will be extended to continuous k next)

T (k, t) : =
∑

|j|=k

∑

k1

∑

k2

{
û(k1, t) · û(k2, t)⊗ k2 · û(j, t)δk1+k2,j

}

S(k, t) : =
∑

1≤k′≤k

T (k′, t).

3Further, since ∇ · u = 0 and u is real, k·û(k,t) =0 and û(k,t) =û(−k,t) .
4Many roughly equivalent variants are seen such as defining

E(k, t) :=
∑

k−1/2≤|k|≤k+1/2

1

2
|û(k, t)|2

I tytransfer theory, k is extended to a continuous variable so the exact choice here will not be
significant in the further development of energy transfer theory.
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3. Energy transfer theory. The goal of transfer theory is to develop a closed
system of differential equations for E(k, t) which is (i) of much reduced complexity
than the NSE in wavenumber space, (ii) predicts statistics of fully developed tur-
bulence correctly. This case of fully developed, homogeneous, isotropic turbulence
corresponds to

• smooth, persistent body forces,

• time averaged behavior of E(k, t), and

• high Reynolds number with a richness of persistent scales of motion.

Accordingly, following the second point, they aim at time averaged behavior of
E(k, t)

E(k) := lim
T→∞

sup
1

T

∫ T

0

E(k, t)dt.

and motivated by the first point, we shall suppose energy is input into the k = 1
modes and suffices to preserve constant energy levels in them

E(1, t) =
1

2
U2, for all t > 0, where U is fixed.

Exploiting the third point, energy transfer theories treat k as a continuous variable;
to extend k to a continuous variable, sums are replaced by integrals in the usual way.
Thus the transfer functions and the energy satisfy

S(k, t) = −
∫ k

0

T (k′, t)dk′ or T (k, t) = − ∂

∂k
S(k, t). (3.1)

With these small approximations we have the (following non-closed energy equation
in wave number - time space:

∂

∂t
E(k, t) +

∂

∂k
S(k, t) + 2νk2E(k, t) = 0 for 1 < k <∞, t > 0,

E(1, t) =
1

2
U2 , for t > 0,

E(k, 0) = E0(k) for 1 < k <∞ where E0(k) ≡ 0 for large k.

A transfer theory, as developed by Obukhov [O41], W. Heisenberg [H48], Kovasz-
nay [K48], Ellison [E61] and Pao [Pao65], is simply a closure which relates S(k, t) back
to E(k, t) either through an algebraic relation (simplest) or an extra set of integro-
differential equations, [D04]. A number of transfer theories have been proposed (sum-
marized excellently in Davidson [D04] and Monin and Yaglom [MY75]). Of these
(given below) neither Obukhov’s, Heisenberg’s nor Kovasznay’s closure correctly pre-
dict exponential decay of the energy spectrum for large enough wavenumbers, [D04]
and [MY75]. All but Pao’s closure are based on an assumption that energy transfer
is a non-local, even global, process. This contradicts our understanding of the energy
cascade’s processes. Davidson [D04], page 479, summarizes the various closures by

"In fact, only Pao’s hypothesis really withstands scrutiny."
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The various transfer theory closures are given as follows

Obukhov: S(k)
.
= Const ·

∫ ∞

k

E(k′)dk′

{∫ k

0

k′2E(k′)dk′

}

Ellison: S(k)
.
= Const · kE(k)

{∫ k

0

k′2E(k′)dk′

} 1

2

Heisenberg: S(k)
.
= Const ·

∫ ∞

k

k′−3/2E1/2(k′)dk′
∫ k

0

k′2E(k′)dk′

Kovasznay: S(k)
.
= Const · k5/2E3/2(k)

Pao: S(k)
.
= Const · ε1/3k5/3E(k).

The simplest of the above and, as n noted above, so far the most successful is the
transfer theory of Pao [Pao65]. To motivate his closure, Y.-H. Pao writes (page 1067
in [Pao65]):

"We visualize the transfer of turbulent energy as a cascading process
in which the spectral elements are continuously transferred to even
larger wave numbers .... Let the rate at which an energy spectral
element is transferred across k be σ ... then the energy flux across
k is S(k) = E(k)σ(k). We assert that the spectral element σ(k) is
dependent on ε ... and on the wavenumber k .... Dimensional
reasoning gives

σ(k) = α−1ε1/3k5/3.

Thus ..."
To be very specific, Pao’s transfer theory postulates the algebraic relation:

S(k, t) = α−1ε
1/3
0 k5/3E(k, t), where ε0 = 2

−3/2α−1U3. (3.2)

Here α is the Kolmogorov constant (with value between 1.4 and 1.6) and ε0 is an
estimate of the Pao model’s prediction of its own energy dissipation rate. Because
the Pao model is simple enough for exact calculation, the exact value (see Sections 2
and 3 for its calculation) given above is used.

We explore herein consequences of Pao’s closure assumption above, means study-
ing the long time averaged behavior of solutions to the following hyperbolic, initial
boundary value problem:

∂

∂t
E(k, t) +

∂

∂k
(α−1ε

1/3
0 k5/3E(k, t)) + 2νk2E(k, t) = 0 for 1 < k <∞, t > 0, (3.3)

E(1, t) =
1

2
U2, for t > 0, and ε0 = 2

−3/2α−1U3,

E(k, 0) = E0(k) for 1 < k <∞ where E0(k) ≡ 0 for large k.

The energy input defines a clear representative large scale velocity U . The natural
large length scale is L = 2π. Thus, the natural Reynolds number associated with the
Pao energy transfer model is

Re =
UL

ν
= 2π

U

ν
.

5



We shall show that the limit defining E(t) exists in Section 2 and is determined by
the properties of the equilibrium problem associated with (Pao Model), given by

∂

∂k
(α−1ε

1/3
0 k5/3E∞(k)) + 2νk

2E∞(k) = 0 for 1 < k <∞, (3.4)

E∞(1) =
1

2
U2, for t > 0, and ε0 = 2

−3/2α−1U3.

Concerning Pao’s model we can prove the following by simply solving exactly the
equilibrium problem.

P���������� 3.1. The only closure of the form

S = Const.εakbEc

predicting exponential decay in the dissipation range of E∞(k) is c = 1 , i.e., the Pao
model.

4. Analysis of Pao’s Transfer Theory. The characteristic curves of the hy-
perbolic equation

∂

∂t
E(k, t) +

∂

∂k
(α−1ε

1/3
0 k5/3E(k, t)) + 2νk2E(k, t) = 0, (4.1)

are the (positive sloped) curves in the k − t plane given by

dt− 5
3
α−1ε

1/3
0 k2/3dk = 0.

and plotted below for some sample parameters.

wavenumber k>1

t

Slope field of characteristics
The problem (3.3) reduces to a linear ordinary differential equation along each char-
acteristic. From this existence and uniqueness follows immediately from standard
theory of hyperbolic equations, e.g., [Whi74].

P���������� 4.1. A unique solution exists to problem (3.3). For each fixed t > 0
the solution E(k, t) has compact support in k.

We shall soon show that E(k, t) approaches the unique solution of the equilibrium
problem as t→∞. That unique solution to the equilibrium problem has exponential
decay as k →∞ and is easily calculated to be

E∞(k) =
1

2
U2k−

5

3 eβ exp(−βk 4

3 ), where β :=
3

2

να

ε
1/3
0

. (4.2)
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P���������� 4.2. E(k, t) → E∞(k) exponentially fast in L2(1,∞) as t → ∞,
even in the case ν = 0.

Proof. Let w(x, t) = E(k, t)−E∞(k). Since E(k, t) has compact support, w(k, t)
decreases exponentially in k (and thus all integrals below are convergent). subtraction
gives the following equation for w(k, t):

∂

∂t
w(k, t) +

∂

∂k
(α−1ε

1/3
0 k5/3w(k, t)) + 2νk2w(k, t) = 0 , (4.3)

w(1, t) = 0, for t > 0, and w(k, 0) given.

Multiply by w(k, t) and integrate. This yields

d

dt

∫ ∞

1

1

2
w(k, t)2dk +

∫ ∞

1

[
5

6
α−1ε

1/3
0 k5/3 + 2νk2

]
w(k, t)2dk = 0.

The term in brackets is bounded below by a positive constant, even if ν = 0. Thus,
we have exponential convergence to steady state.

The fact that exponential convergence to a k−5/3 energy spectrum occurs even for
the Euler - Pao energy transfer model is perhaps relevant to the Onsager conjecture
that (Onsager, 1949)

"...in three dimensions a mechanism for complete dissipation of
all kinetic energy, even without the aid of viscosity, is available”.

From the last proposition and following arguments in [JLM07], it follows that
time averages on E(k, t) exist and correspond to the equilibrium solution.

C�������� 4.3. The following limit exists and equals E∞(k):

E(k) := lim
T→∞

sup
1

T

∫ T

0

E(k, t)dt = E∞(k).

This corollary implies that we may check consistence of the predictions of the
Pao transfer theory with the K41 theory of homogeneous, isotropic turbulent statistics
through properties of the equilibrium solution, for which an explicit formula is known.

5. Consistency with the K41 Theory. We now turn to consistency of the
predictions with Kolmogorov’s theory of homogeneous, isotropic turbulence (often
called the K41 theory), see [L08], Davidson [D04], Frisch [F95], or Pope [P00] for
details. Consistency of the Pao model with K41 is known for energy input by body
forces. This section verifies that consistency is not changed by keeping the range
of wavenumbers to be k > 1 and imputing energy into (3.3) through the boundary
condition at k = 1. to that end we consider the energy spectrum (often called the
Pao spectrum) given by

E(k) =
1

2
U2k−

5

3 eβ exp(−βk 4

3 ), (5.1)

where β : =
3

2

να

ε
1/3
0

, and ε0 = 2
−3/2α−1U3. (5.2)

Since the model (3.3) has a unique solution, consistency with the predictions of the
K41 theory must be evaluated through the model itself (3.3) or its explicit, time
averaged solution above, without reference to the intended physical meaning of any
variables or formulas. We check the models predictions of statistical equilibrium, the
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inertial energy range spectrum, exponential decay in the dissipation range and the
prediction of the Kolmogorov microscale.

Statistical equilibrium. Statistical equilibrium in the K41 theory means that
the energy input to the large scales (which is roughly O(U3/L)) is balanced (after
time averaging) by energy dissipation primarily at the small scales. To test of this
holds for the Pao model, define (as usual) the time averaged energy dissipation rate
of (3.3) to be

ε := lim
T→∞

1

T

∫ T

0

∫ ∞

1

2νk2E(k, t)dkdt

Corollary 2.1 and the choice of ε0 implies that ε0 = ε. A form of statistical equilibrium
of (3.3) follows by integrating (3.3) and time averaging. This gives

lim
T→∞

1

T

∫ T

0

∫ ∞

1

(
Et(k, t) + (α

−1ε
1/3
0 k5/3E(k, t))k + 2νk

2E(k, t)
)
dkdt = 0.

Using Fubini’s theorem, the first term vanishes. We then have from the second term,
the boundary condition at k = 1 and the third term

α−1ε
1/3
0

1

2
U2 = ε.

Since ε0 = ε and L = 2π this can be rewritten to show statistical equilibrium of the
Pao transfer model as:

ε =
π
√
2

2α

U3

L
.

The inertial range energy spectrum. To deduce the predictions of (3.3)
about the inertial range energy spectrum we begin with the model (3.3) itself. Since
E(k, t) is bounded and Re is large (typically ν is small), there is a range of k (
1 < k < 1/ηPao, say) for which the term 2νk2E(k, t) is negligible. On this range,
(3.3) simplifies to

Et(k, t) + (α
−1ε

1/3
0 k5/3E(k, t))k

.
= 0.

Integrating over 1 < k′ < k, time averaging and using Fubini’s theorem (so the first
term drops out) gives

∫ k

1

(α−1ε1/3k′5/3E(k′))k′dk
′ .
= 0, or α−1ε1/3k5/3E(k)

.
= α−1ε1/3

1

2
U2.

From the choice of ε, 12U
2 = αε2/3. Thus, rearranging

E(k)
.
= αε2/3k−5/3, over 1 < k < 1/ηPao.

This conclusion can also be obtained directly through the exact solution, written as
E(k) = αε2/3k−

5

3 eβ exp(−βk
4

3 ).
The dissipation range. The K41 theory predicts exponential energy decay for

large k and gives an estimate of the transition point at which this decay begins to be
the dominant effect. Exponential decay of E(k) for large k follows immediately from
the closed for representation of the Pao spectrum

E(k) = αε2/3k−
5

3 eβ exp(−βk 4

3 ).
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Estimate for the Pao Model’s Microscale. Exponential decay of E(k) be-

comes to be significant when the exponent βk
4

3 is O(1) or larger. Since

β :=
3

2

να

ε1/3
, and ε = 2−3/2α−1U3

this occurs when νε−1/3k4/3 ≥ O(1). Using ε = 2−3/2α−1U3 and rearranging shows

that this condition is equivalent to k
.
= (U/ν)3/4

.
= Re3/4 /L , as L = 2π yielding the

predicted models’s microscale of

ηPao
.
= Re−3/4 L,

agreeing with the prediction of the Kolmogorov microscale.

6. Connection between energy transfer theories and shell models.. We
conclude by noting that there is also a correspondence between energy transfer the-
ories and shell models of turbulence. Indeed, transfer theory postulates a functional
relationship between S and E, S = Π(k,E), yielding an energy transfer model

∂

∂t
E(k, t) +

∂

∂k
Π(k,E(k, t)) + 2νk2E(k, t) = 0.

Differencing the k derivative gives a shell model: E1(t) =
1
2U

2 and for k = 2, 3, · · ·,

d

dt
Ek(t) + Π(k,Ek(t))−Π(k − 1, Ek−1(t)) + 2νk2Ek(t) = 0.

To reverse this step, given a shell model, the differences in the energy transfer func-
tion can, through its modified equation, be identified with an approximation to a k
derivative and thus an associated transfer theory.

As a concrete example consider the Pao model

∂

∂t
E(k, t) +

∂

∂k
(α−1E ε

1/3
0 k5/3E(k, t))+ (6.1)

2νk2E(k, t) = 0 for 1 < k <∞, t > 0, (6.2)

E(1, t) =
1

2
U2, for t > 0, and ε0 = 2

−3/2α−1E U3,

E(k, 0) = E0(k) for 1 < k <∞ where E0(k) ≡ 0 for large k.

If E(k, t) has a Pao spectrum we can choose in advance break wave numbers kn
that equi-distribute energy (at least after reaching statistical equilibrium). Let

En(t) ≃ E(kn, t) ≃ EFIXED, n = 2, · · ·, N.

Then, differencing the Pao model gives a shell model

d

dt
En(t) + α−1E (ε

1/3
0 k5/3n En(t)− ε

1/3
0 k

5/3
n−1En−1(t))/(kn − kn−1)+ (6.3)

2νk2nEn(t) = 0 for 2 < n ≤ N, t > 0, (6.4)

E1(t) =
1

2
U2, for t > 0, and ε0 = 2

−3/2α−1E U3,

En(0) = En,0 for 1 < k <∞ where En,0 ≡ 0 for large n.

9



7. Conclusions. The Pao transfer theory is both the simplest and the most suc-
cessful transfer theory in that it predicts the major statistics of isotropic turbulence
successfully. Its energy spectrum E(k, t) approaches its time averaged value expo-
nentially fast and so the Pao theory cannot give useful information about essentially
time dependent properties on the energy spectrum like whether backscatter occurs
intermittently or whether E(k, t) approaches E(k) monotonically or through some
sort of intermittent bursts punctuating periods of apparent equilibrium.
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