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Abstract

Most predictions of the noise generated by a turbulent flow are done using a
model due to Lighthill from the 1950’s (the Lighthill analogy). In a large region
of a fluid at rest surrounding a small region containing a small Mach number,
high Reynolds number turbulent flow, this is

• Step 1: Solve the incompressible Navier-Stokes equations with the constant
density %∞ for the velocity u.

• Step 2: Compute div(div(ρ∞u⊗ u)) and solve the inhomogeneous acoustic
equation in both regions for the acoustic density fluctuations R:

∂2
t R− ω4R = div(div(ρ∞u⊗ u)),

where
√

ω is the speed of sound.

Current understanding of the derivation of the Lighthill analogy seems to be
a variation on Lighthill’s origional reasoning and has resisted elaboration by the
tools of both formal asymptotics and rigorous mathematics. In this report we
give a rigorous derivation of Lighthill’s acoustic analogy (including the sound
source div(div(ρ∞u⊗ u)) being derived from an incompressible flow simulation.
from the compressible Navier-Stokes and energy equation as Ma → 0.

1 Introduction

1.1 The Lighthill equation and Lighthill’s acoustic analogy

The mathematical simulation of aeroacoustic sound presents many technical problems
related to modeling of its generation and propagation. Its importance for diverse
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industrial applications is without any doubt in view of the demands of user comfort
and environmental regulations. A few examples where aeroacoustic noise is a critical
effect include the sounds produced by jet engines of an airliner, the noise produced in
high speed trains and cars, wind noise around buildings, ventilator noise in various
household appliances, . . ..

The departure point of most methods of acoustic simulations (at least those called
hybrid methods) is the Lighthill theory [36], [37]. The starting point in the Lighthill
approach in the simplest case is the system of Navier-Stokes-Poisson equations describ-
ing motion of a viscous compressible gas in isentropic regime, for unknown functions
density % and velocity u. They read

∂t% + div%u = 0,

∂t(%u) + div(%u⊗ u) +∇xp = %f + divS,
(1.1)

where p = p(%) is the pressure and S = S(∇(u)) is the viscous stress tensor; p and S
are given functions characterizing the gas and will be specified later. In this case we
can rewrite the system as follows

∂tR + divQ = σ ≡ ∂tΣ,

∂tQ + ω∇xR = F− divT
(1.2)

where we have denoted
Q = %u, R = %− %∞ (1.3)

as the momentum and the density fluctuations from the basic density distribution %∞
of the background flow, and where we have set

Σ = −%∞, ω = p′(%∞) > 0, F = %f ,

T = %u⊗ u +
(
p− ω(%− %∞)

)
I− S

(1.4)

Taking the time derivative of the first equation in (1.2) and the divergence of the
second one, we obtain

∂2
t R− ω∆R = ∂tσ − divF + div(div(T). (1.5)

Lighthill reasoned that, because of the large differences in energy, there is very little
feedback from acoustics to the flow. Thus, according to the Lighthill’s interpretation,
equation (1.5) (or equivalently the system of equations (1.2)) is a non homogenous
wave equation describing the acoustic waves (fluctuations of density), where the terms
at the right hand side correspond to the mononopolar (∂tσ), bipolar (−divF) and
quadrupolar (div(div(T)) acoustic sources respectively, and are considered as known
and calculable from the background fluid flow field. In the sequel, we shall deal rather
with the formulation (1.2) and will refer to it as to the Lighthill equation or to the
Lighthill acoustic analogy.

The physical sense of the terms at the right hand side of equation (1.5) is the
following.

The first term ∂tσ represents the acoustic sources created by the changes of control
volumes due to changes of pressure or displacements of a rigid surface: this source can
be schematically described via a particle whose diameter changes (pulsates) creating
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acoustic waves (density perturbations). It may be interpreted as well as an instation-
ary injection of a fluid mass σ per unit volume. The acoustic noise of a gun shot is a
typical example.

The second term divF describes the acoustic sources due to external forces (usually
resulting from the action of a solid surface on the fluid). This sources are responsible
for the most of the acoustic noise in the machines and ventilators.

The third term div(div(T) is the acoustic source due to the turbulence and viscous
effects in the background fluid flow which supports the density oscillations (acoustic
waves). The noise of steady or non steady jets in aero-acoustics is the typical example.

The tensor T is called the Lighthill tensor. It is composed from three tensors
whose physical interpretation is the following: the first term is the Reynolds tensor
with components %uiuj describing the (nonlinear) turbulence effects, the term (p −
ω(%− %∞))I expresses the entropy fluctuations and the third one is the viscous stress
tensor S.

The method for predicting noise using Lighthill’s equation is usually referred to as
a hybrid method since noise generation and propagation are treated separately. The
first step consists in using data provided by numerical simulations to form the sound
sources. The second step then consists in solving the wave equation forced by these
source terms to determine the sound radiation. The main advantage of this approach
is that most of the conventional flow simulations can be used in the first step.

In its simplest form of a large region of a fluid at rest surrounding a small region
containing a small Mach number, high Reynolds number turbulent flow, the, so called,
hybrid method based upon Lighthill’s theory is, e.g., Wagner, Huttl and Sagaut [46],

• Step 1: Solve the incompressible Navier-Stokes equations for the velocity u.

• Step 2: Compute div(div(ρ∞u⊗ u)) (possibly plus more terms that are often
dropped) and solve the inhomogeneous acoustic equation (1.5) in both regions
for the acoustic density fluctuations R.

In practical numerical simulations, the Lighthill tensor is calculated from the veloc-
ity and density fields obtained by using various direct numerical methods and solvers
for compressible Navier-Stokes equations. Then the acoustic effects are evaluated
from the Lighthill equation by using diverse direct numerical methods for solving the
non homogenous wave equations (see e.g. Colonius [8], Mitchell at al [35], Freud at al
[23], among others). For flows in the low Mach number regimes the direct simulations
are often costly, unstable, inefficient and unreliable, essentially due to the presence of
rapidly oscillating acoustic waves (with periods proportional to the Mach number) in
the equations themselves. In the low Mach number regimes the acoustic analogies as
the Lighthill equation, in combination with the incompressible flow solvers, give more
reliable results, see [23].

Indeed, if the Mach number is small, the background flow can be considered as
incompressible implying negligible entropy fluctuations for non heated or isentropic
flows [36], Bogey at al [4], Freud at al [23]; thus the Lighthill tensor reduces to

T = %u⊗ u− S, where %∞ = const., divu = 0. (1.6)

Moreover, due to the latter condition, for newtonian fluids, div(divS) = 0, and the
only relevant part of the Lighthill tensor in the Lighthill equation is the Reynolds
tensor %u⊗ u, cf. Lighthill [36].
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The comparison of numerical simulations using compressible solvers on one hand
and incompressible solvers on other hand at low Mach number regimes show no notice-
able difference in the evaluated acoustic fields and a good agreement with experiments
up to Ma = 0.6, see Boersma [3] and references quoted there.

For a complete review of numerical methods, evaluation and approximation of
various sound sources in the Lighthill equation from the point of view of mathematical
modeling and acoustic simulations see Freud at al [23].

The Lighthill acoustic analogy as described above involves the interaction of two
motions of different time scales: the slow variables describe the background fluid
flow governed by the Navier-Stokes equations; the fast variables describe the sound
propagation and are governed by a non homogenous wave equation.

The main goal of the present paper is to establish a link between the recent theory
of low Mach number limits in various models describing viscous compressible fluids
(which started with the pioneering paper of Lions, Masmoudi [30]) on one hand, and
Lighthill’s acoustic analogy ([36], [37]) as well as underlying hybrid methods used
by numerical analysts in acoustics (see e.g. Boersma [3] or Feud at al. [23]). The
point of view presented in this paper should be compared and combined with another
interpretations and results as [22] or [18].

We shall prove rigorously, that the Lighthill equation (1.2) with the right hand
side calculated from incompressible Navier-Stokes equations can be obtained as a
particular low Mach number limit of the Navier-Stokes-Poisson system describing
viscous compressible gas in isentropic regime, more precisely, as a superposition of
slow variables being governed by the incompressible Navier-Stokes equations and fast
time variables solving a homogenous wave equation.

This result is obtained in the context of weak solutions, on an arbitrary large time
interval and for the ill prepared initial data. It is formulated in Theorem 2.1.

We also prove, under certain assumptions on initial data, that the right hand side
of the Lighthill equation is independent of time and can be calculated from the steady
incompressible Navier-Stokes equations. This result is formulated in Theorem 2.2.

All these results can be reformulated and proved for the complete Navier-Stokes-
Fourier system describing the motion of viscous heat conducting gasses modulo over-
coming additional technical difficulties in the underlying mathematical analysis.

One may anticipate that the future development of mathematical fluid mechanics
as well as capabilities of the related numerical simulations will depend on under-
standing not only the asymptotic models (the Lighthill equation being an example)
but the way they can be rigorously derived. We therefore believe that the theorems
itself are as important as the methods leading to their proofs. These methods have
their mathematical background in physically motivated scaling analysis of the Navier-
Stokes-Poisson system; the main challenge and difficulty consists in the fact the we
deal with interaction of fluid motions characterized by two different time scales.

2 Original and target problems, main results

2.1 Weak formulation of the Lighthill equations

We shall investigate the Lighthill equation (1.2) with σ = ∂tΣ, F and T a given
scalar-, resp. vector- resp. tensor-valued functions on a sufficiently smooth (at least
Lipschitz) bounded domain Ω on an arbitrary large time interval (0, T ), T > 0.

Hereafter, we explain what we mean under the weak solution of system (1.2):
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Definition 1.1
Let T, F and Σ belong to L1(0, T ;L1(Ω)). We say that a couple (R,Q) ∈ L1(0, T ; L1(Ω))×
L1(0, T ; L1(Ω; R3)) represents a weak solution of the Lighthill equation (1.2) on (0, T )×
Ω if there exists a couple (R(1)

0 ,Q0) ∈ L1(Ω)× L1(Ω;R3) (of initial conditions) such
that ∫ T

0

∫
Ω

(
(R− Σ)∂tϕ + Q · ∇xϕ

)
dxdt

= − ∫
Ω

R
(1)
0 ϕ(0)dx, ϕ ∈ C∞c ([0, T )× Ω)),

(2.1)

∫ T

0

∫
Ω

(
Q∂tϕ + ωRdivϕ

)
dxdt

= − ∫ T

0

∫
Ω

(
F · ϕ + T : ∇xϕ

)
dxdt− ∫

Ω
Q0 · ϕ(0, ·)dx,

ϕ ∈ C∞c ([0, T )× Ω); R3), ϕ · n = 0 on [0, T )× ∂Ω.

(2.2)

If (R,Q) is a sufficiently smooth weak solution to the Lighthill equation in a
sufficiently smooth domain Ω with sufficiently smooth external data F, Σ and T,
(Tn)× n = 0 at ∂Ω, corresponding to initial conditions (R(1)

0 ,Q0) then it verifies

∂tR + divQ = ∂tΣ in (0, T )× Ω,

∂tQ + ω∇xR = F− divT in (0, T )× Ω, (2.3)

Q · n = 0 at (0, T )× ∂Ω,

and
R(0, x) = R

(1)
0 (x)− Σ(0, x), x ∈ Ω (2.4)

in the classical sense.

2.2 The Navier-Stokes-Poisson system with small Mach num-
ber

The time evolution of the density %, the velocity u of a viscous, compressible fluid in
isentropic and low Mach number regime characterized by the Mach number, Ma = ε,
is governed by the Navier-Stokes-Poisson system :

∂t% + div(%u) = 0, (2.5)

∂t(%u) + div(%u⊗ u) +
1
ε2
∇xp(%) = div S+ %f , (2.6)

The other nondimensional parameters in this system, as Strouhal number, Reynolds
number and eventually Froude number, have been normalized to 1 (see, for instance,
Klein [25] or the survey paper by Klein at al. [26] for more details about the dimen-
sional analysiys of fluid dynamics equations).

Once completed with the boundary conditions

u · n = 0, (Sn)× n = 0 on the boundary ∂Ω, (2.7)
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the conservation of total energy in Ω

d
dt

∫

Ω

(ε2

2
%|u|2 + H(%)

)
dx + ε2

∫ τ

0

∫

Ω

S : ∇xudxdt = ε2

∫

Ω

%fdx (2.8)

follows provided both % > 0 and u are ”sufficiently” smooth.
In (2.5-2.8),

S = S(∇xu) = µ
(
∇xu +∇⊥x u− 2

3
divu I

)
+ ζdivuI, (2.9)

is the viscous stress tensor with shear (µ) and bulk (ζ) constant viscosities which
satisfy

µ > 0, ζ ≥ 0 (2.10)

and the so called potential energy H is given by

H(%) = %P (%) where P (%) = P (1) +
∫ %

1

p(s)
s2

ds. (2.11)

Here and hereafter, the symbol 1
2 (∇xu + ∇⊥x u) denotes the symmetrized gradient.

Since the entropy is supposed to be constant through the flow, the pressure takes the
form

p(%) = %γ , γ > 1, yielding H(%) =
1

γ − 1
%γ . (2.12)

The physical values of the adiabatic constant γ are given by formula γ = R+cv

cv
,

where cv is the specific heat at constant volume and R is the universal gas constant;
physically reasonable values of γ’s are in the range (1, 5

3 ], γ = 5
3 being the adiabatic

constant of the monoatomic gases. We notice, that p(%) satisfies standard themody-
namics stability condition asserting its strict monotonicity (cf. Bechtel et al. [2]) and
that function H in (2.11) is strictly convex on (0,∞). Later on, we shall suppose

γ >
3
2

(2.13)

which is the condition required both by the existence theory and low Mach number
limit performed in this paper. Notice that at least adiabatic constants of monoatomic
gases do enter into this range.

We shall investigate the density fluctuations around a positive constant density %.
Conformably to this fact, the Navier-Stokes-Poisson system (2.5-2.6) will be supple-
mented with initial conditions

%(0, ·) = %0, (%u)(0, ·) = %0u0, (2.14)

where the initial data

%0 = %ε,0 = % + ε%
(1)
ε,0, u0 = uε,0, (2.15)

are chosen so that
% =

1
|Ω|

∫

Ω

%ε,0 dx = const. > 0, (2.16)

with the quantities %
(1)
ε,0, uε,0, bounded uniformly with respect to ε → 0.
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Here and in what follows, we should always keep in mind that the absence of
the density in the dependence of the transport coefficients µ and ζ is required by
the existence theory and does not play any significant role in the present paper. We
also should keep in mind that more general pressure law then (2.12) could be taken
into account, provided p(%) ∼ %γ for large %’s and provided the function H in (2.11)
remains strictly convex on (0,∞).

Definition 1.2
We shall say that a couple {%,u} is a bounded energy weak solution of the
Navier-Stokes-Poisson system (2.5 - 2.12) on a time interval (0, T ) if the following
conditions are satisfied:

• the density % is a non-negative function, % ∈ L∞(0, T ; Lγ(Ω)), the velocity field
u belongs to the space L2(0, T ; W 1,2(Ω; R3)),

u · n = 0 on (0, T )× ∂Ω

and the integral identity
∫ T

0

∫

Ω

(
%B(%)∂tϕ + %B(%)u · ∇xϕ− b(%) divu ϕ

)
dx dt = (2.17)

−
∫

Ω

%0B(%0)ϕ(0, ·) dx

holds for any test function ϕ ∈ D([0, T )× Ω)), and any b such that

b ∈ L∞ ∩ C[0,∞), B(%) = B(1) +
∫ %

1

b(z)
z2

dz; (2.18)

• the momentum %u belongs to L∞(0, T ; L
2γ

γ+1 (Ω;R3)), and the integral identity
∫ T

0

∫

Ω

(
%u · ∂tϕ + (%u⊗ u) : ∇xϕ +

1
ε2

p(%, ϑ) divϕ
)

dxdt = (2.19)

∫ T

0

∫

Ω

(
S : ∇xϕ− %f · ϕ

)
dx dt−

∫

Ω

%0u0 · ϕ(0, ·) dx

is satisfied for any ϕ ∈ C∞c ([0, T )× Ω; R3), ϕ · n = 0 on (0, T )× ∂Ω;

• the total energy balance

[ ∫

Ω

(ε2

2
%|u|2 + H(%)

)
dx

]
(τ) + ε2

∫ τ

0

∫

Ω

S : ∇xudxdt (2.20)

≤ ε2

∫ τ

0

∫

Ω

%f · udxdt +
∫

Ω

(ε2

2
%0|u0|2 + H(%0)

)
dx

holds for a.a. τ ∈ (0, T ).

It follows from (2.17) and (2.19) that (%, %u) admit pointwise time values, namely
% ∈ Cweak([0, T ];Lγ(Ω) and %u ∈ Cweak([0, T ]; L

2γ
γ+1 (Ω)), meaning among other things

the satisfaction of initial conditions %0, %0u0 in the weak sense.
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Note that (2.17) is the so-called renormalized formulation of continuity equation
introduced by DiPerna and Lions [13].

The existence of variational solutions in the sense of Definition 1.2 was established
in Lions [29] for γ ≥ 9/5 and in [19] for γ > 3/2 for Ω ⊂ R3 a bounded spatial domain,
where the velocity field was supposed to vanish on the boundary. The details about
necessary modifications to accommodate the slip boundary conditions (2.7) can be
found in [18]. More recent information about the existence results for the Navier-
Stokes-Poisson system or for the Navier-Stokes-Fourier system can be found in the
monographs [14], [39], [18].

2.3 Incompressible Navier-Stokes equations, nonsteady case

In order to conclude this part, we introduce a standard concept of weak solutions
to the system of Navier-Stokes equations describing incompressible newtoninan fluid
introduced more than 70 years ago by Leray [28].

In the classical framework, one is searching for a couple (Π,U) representing pres-
sure and velocity fields, Π a scalar-valued and U a vector-valued functions of time
t ∈ [0, T ) and space x ∈ Ω, which satisfies

%∂tU + %div(U⊗U) +∇Π = divS+ %f ,

divU = 0
(2.21)

endowed with the initial conditions

U(0, x) = U0(x) (2.22)

and boundary conditions (2.7).
Multiplying the first (momentum) equation in (2.21) scalarly by U, and integrating

over Ω, yields, for a classical solution (Π,U), the energy identity, which reads

1
2
%

d
dt

∫

Ω

|U|2dx +
∫

Ω

S : ∇xUdx = %

∫

Ω

f ·Udx. (2.23)

In (2.22) we have denoted by % > 0 the constant density of the fluid and by S the
same viscous stress tensor as that one defined in (2.9-2.10); obviously, by virtue of
the second (continuity) equation in (2.21), it simplifies to

S = µ
(
∇xU +∇⊥x U

)
. (2.24)

Definition 1.3

(i) We shall say that function U is a weak solution of Navier-Stokes system (2.21),
supplemented with the boundary conditions (2.7) and the initial conditions (2.22)
if the following conditions are satisfied:

•
U ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ; W 1,2(Ω;R3))

divU = 0 a.a. on (0, T )× Ω, U · n|(0,T )×∂Ω = 0;
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• the integral identity

∫ T

0

∫

Ω

(
%U ·∂tϕ+%(U⊗U) : ∇xϕ

)
dxdt = −

∫ T

0

∫

Ω

%f ·ϕdxdt+ (2.25)

∫ T

0

∫

Ω

µ(∇xU +∇⊥x U) : ∇xϕ dx dt−
∫

Ω

%U0 · ϕ(0, ·) dx

holds for any test function

ϕ ∈ C∞c ([0, T )× Ω; R3), div ϕ = 0, ϕ · n|[0,T )×∂Ω = 0. (2.26)

(ii) We say that U is a weak solution with bounded energy if U is a weak solution
which satisfies the energy inequality

[
1
2%

∫
Ω
|U|2dx

]
(τ) +

∫ τ

0

∫
Ω
S : ∇xUdxdt

≤ %
∫ τ

0

∫
Ω

f ·Udxdt + A

(2.27)

for a.a. τ ∈ (0, T ), where A is a positive constant depending only on initial
data.

(iii) We shall say that function U is a Leray-Hopf weak solution of Navier-Stokes
system (2.21), supplemented with the boundary conditions (2.7) and the initial
conditions (2.22) if it is a weak solution with bounded energy and the constant
A in (2.27) has the form

A =
1
2
%

∫

Ω

|U0|2dx. (2.28)

2.4 Incompressible Navier-Stokes equations, steady case

With the notation of the previous section the steady Navier-Stokes equations read

%div(U⊗U) +∇xΠ = divS+ %f ,

divU = 0.
(2.29)

They are completed with slip boundary condition (2.7). Weak solutions to this system
are defined as follows.

Definition 1.4
We say that a vector field U is a weak solution of the problem (2.29), (2.7) if

U ∈ W 1,2(Ω; R3), U · n|∂Ω = 0, divU = 0 (2.30)

and
∀ϕ ∈ C∞c (Ω; R3) ϕ · n|∂Ω = 0,

∫
Ω

(
%U⊗U)− µ(∇U +∇⊥U)

)
: ∇xϕdx = − ∫

Ω
%f · ϕdx

(2.31)
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In the context of steady Navier-Stokes equations, we shall investigate the asymp-
totic limits to the Navier-Stokes-Poisson system (2.5-2.7) emanating from initial data
(2.15), (2.16) which are, in addition, well prepared, meaning

%
(1)
ε,0 → 0 a.e. in L∞(Ω),

%ε,0|uε,0|2 → %|u0|2 weakly in L1(Ω).
(2.32)

2.5 The main results - asymptotic limits

For the formulation of the main theorem and also throughout the proofs we shall need
the Helmholtz projection on the divergence free vector fields, H, and its orthogonal
complement, projection on gradients, H⊥.

For v ∈ Lp(Ω; R3), 1 < p < ∞, where Ω is a Lipschitz domain,

H⊥(v) = ∇ψ, H(v) = v −∇ψ, (2.33)

where ψ ∈ W 1,p(Ω) := {z ∈ W 1,p(Ω) | ∫
Ω

zdx = 0} is a (unique) solution of the weak
Neumann problem

∀η ∈ C∞c (Ω),
∫

Ω

∇ψ · ∇ηdx =
∫

Ω

v · ∇ηdx. (2.34)

Thus
H⊥ : Lp(Ω;R3) → Gp(Ω) := {∇z | z ∈ W 1,p(Ω)},

H : Lp(Ω;R3) → L̇p(Ω) := {z ∈ Lp(Ω;R3) |divz = 0}
(2.35)

are continuous linear operators from Lp(Ω; R3) to Lp(Ω;R3), where the spaces at the
right hand side are closed subspaces of Lp(Ω;R3). In particular,

L2(Ω; R3) = H(L2(Ω))⊕H⊥(L2(Ω)) (2.36)

where the direct sum is orthogonal.
Due to the elliptic regularity applied to (2.34), H and H⊥ are continuous linear

operators from W k,p(Ω;R3) to W k,p(Ω;R3), k ∈ N .
Having introduced all the necessary material we are ready to state the main result

concerning the asymptotic limit of solutions to the Navier-Poison-Stokes system for
low values of the Mach number.

Theorem 2.1. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1). Let
{%ε,uε}ε>0 be a family of bounded energy weak solutions to the Navier-Stokes-Poisson
system in the sense of Definition 1.2, with p, H determined in terms of %ε by (2.12-
2.13) and S defined in (2.9-2.10). Furthermore, assume the solutions emanate from
the initial state

%ε,0 = % + ε%
(1)
ε,0, uε,0, with

∫
Ω

%
(1)
ε,0dx = 0, % = const. > 0, (2.37)

where
%
(1)
ε,0 → %

(1)
0 , uε,0 → u0, weakly-(*) in L∞(Ω) (2.38)

and from the right hand side

f ∈ L∞(0, T ;L2(Ω;R3)). (2.39)
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Let us introduce fast time variables

rε(t, x) = %(εt, x), vε(t, x) = u(εt, x),

r
(1)
ε (t, x) = rε(t,x)−%

ε , qε(t, x) = (rεvε)(t, x).
(2.40)

Then the following holds true:

•
%ε → % in C([0, T ];Lr(Ω)) ∩ L∞(0, T ; Lγ(Ω)), r ∈ [1, γ) (2.41)

and, passing to a subsequence if necessary,

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)), (2.42)

∀T ∈ (0,∞), r(1)
ε → r(1) in Cweak([0, T ];Lsγ (Ω)), sγ = min{γ, 2}, (2.43)

∀T ∈ (0,∞), qε → q weakly-∗ in L∞(0, T ; L
2γ

γ+1 (Ω;R3)). (2.44)

• Vector filed U is a weak solution with bounded energy (in the sense of Definition
1.3) to the Navier-Stokes equations (2.21), (2.7) with initial conditions

U0 = H(u0), (2.45)

where H is the Helmholtz projection defined in (2.33-2.35).

• If moreover

H(u0) ∈ W
2
5 , 5

4 (Ω;R3) (Sobolev-Slobodeckii space), (2.46)

then there exists a unique function

Π ∈ L
5
4 (0, T ; W 1, 5

4 (Ω)) (2.47)

such that the couple (Π,U) satisfies the integral identity
∫ T

0

∫

Ω

%U·∂tϕ dx dt+
∫ T

0

∫

Ω

(
%(U⊗U)−µ(∇xU+∇T

x U)
)

: ∇xϕ dx dt (2.48)

+
∫ T

0

∫

Ω

Πdivϕ dx dt = −
∫ T

0

∫

Ω

%f · ϕ dx dt−
∫

Ω

%U0 · ϕ(0, ·) dx

with test functions

ϕ ∈ C∞c ([0, T )× Ω; R3), ϕ · n|(0,T )×∂Ω = 0. (2.49)

• The couple (R,Q), where

R = r(1) −
(
1/[p′(%)]

)
Π, Q = q− %U (2.50)

satisfies equations (2.1-2.2) with

ω = p′(%), F = %f , T = %U⊗U− µ(∇xU +∇⊥x U), Σ = − 1
ω Π (2.51)

and with initial conditions

Q0 = %u0 − %H(u0), R
(1)
0 = %

(1)
0 . (2.52)
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Therorem 2.1 will be proved in several steps in Sections 3–5.

If the initial data are well prepared and close to a steady solution, the system
in the limit is again the Lighthill equation with the more regular right hand side
which emanates from the steady Navier-Stokes equations. This result is subject of
the following theorem.

Theorem 2.2. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1). Let
{(%ε,uε)} be a family of the bounded energy weak solutions to the Navier-Stokes-
Poisson system investigated in Theorem 2.1, which emanates from the same initial
conditions and right hand side, meaning that (%0,ε, u0,ε) and f satisfy (2.37-2.39).
Suppose, in addition, that the right hand side f is time independent, i.e.

f ∈ L2(Ω; R3), (2.53)

that the initial data are well prepared, i.e. (2.32) holds, and close to the steady state
corresponding to f , meaning that

u0 satisfies (2.30-2.31). (2.54)

Then the sequences %ε, uε, r
(1)
ε , qε, where r

(1)
ε , qε are defined in (2.40), admit limits

%, u, r(1), q specified in (2.41–2.44), and these limits have the following properties:

•
U = u0; (2.55)

• there exists a function Π ∈ L2(Ω) such that
∫

Ω

(
%u0⊗u0−µ(∇xu0+∇⊥x u0)

)
: ∇xϕdx+

∫

Ω

Πdivϕdx = −
∫

Ω

%f ·ϕdx (2.56)

for all
ϕ ∈ C∞c (Ω; R3), ϕ · n|∂Ω = 0;

• the couple
(R,Q) =

(
r(1) − (p(%))−1Π , q

)
(2.57)

belongs to
(
Cweak([0, T ]; Lsγ (Ω)) ∩ L∞(0, T ;Lsγ (Ω))

)
× L∞(0, T ;L

2γ
γ+1 (Ω;R3)) (2.58)

and satisfies equations (2.5), (2.6) with

ω = p′(%), F = %f , T = %u0 ⊗ u0 − µ(∇xU +∇⊥x U), Σ = 0 (2.59)

and with initial conditions

Q0 = %u0, R
(1)
0 = %

(1)
0 . (2.60)

Theorem 2.2 will be proved in Section 7.
From the point of view of mathematical modeling of acoustic waves, where the

standard procedure consists in solving directly the non homogenous wave equation
(2.3) for unknowns (R,Q) with zero initial data R(0) and Q(0), Theorems 2.1 and
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2.2 suggest an alternative approach: To construct the solution (R,Q) of the Lighthill
equation via formulas (2.50) resp. (2.57) by using the solution (Π,U) of the incom-
pressible Navier-Stokes equations and the solution (r(1),q) of the homogenous wave
equation with the initial data r(1)(0) = 1

ω Π(0), q(0) = 0.

In what follows we shortly describe the organization of proofs.
Section 3 is devoted to the a priori estimates. Lemma 3.1 shows the energy

inequality in the form which takes into account the way the initial data are bounded.
It is then used in Lemma 3.2 to deduce estimates for the real-time variables (%ε,uε)
and in Lemma 3.3 to derive estimates for the fast-time variables (rε,vε).

Section 4 concerns the passage to the limit in the Navier–Stokes–Poisson equations
rescaled to the fast time; we show that the limiting density fluctuations and gradient
part of the momentum satisfy a conveniently weakly formulated homogenous wave
equation. These results are concisely announced in Lemmas 4.1.

Section 5 deals with the real-time limit of the bounded energy weak solutions
of the Navier-Stokes-Poisson equations to a weak solution with bounded energy of
the Navier-Stokes equations in the sense of Definition 1.3. The principal result is
formulated in Lemma 5.1 and proved through Sections 6.1–6.5. In Section 6.1, we
start to investigate basic limits which can be deduced from à priori estimates listed
in Lemma 4.1 via classical compactness tools of functional analysis and we show,
among others, the strong convergence of divergenceless part of the sequence of velocity
fields. The projection to the gradient part suffers from the lack of estimates of the time
derivative; in fact, due to the presence of the singular term (1/ε2)∇p in the momentum
equation, they may rapidly oscillate. Consequently, as usual in these type of problems,
we will not be able to pass to the limit in the part div(H⊥(%εuε) ⊗H⊥(uε)) of the
convective term. We shall rather prove that the latter expression tends to a gradient,
and therefore is irrelevant from the point of view of definition of weak solutions.
This property, discovered by Schochet [41] in the context of strong solutions (see
also related papers by Kleinerman, Majda [24] da Veiga [9], Métivier, Schochet [34],
Alazard [1] as well as the survey papers [42], [10], [11] plus references quoted there) ,
and by Lions, Masmoudi [30] (see also the the survey paper [32], [33]) in the context
of weak solutions, can be proved nowadays by various methods see [12],[31], [6], [33],
[15], [17], [16]. They are mostly based on the observation that H⊥(%εuε) satisfy a
non-homogenous wave equation with vanishing right hand side and exploit in various
ways its structure. For the sake of completeness, we show in Sections 6.2-6.3 a ”short”
proof based on the spectral analysis of the underlying wave operator following Lions,
Masmoudi [30]. Then we show in Section 6.4 that the limit velocity field U satisfies
the energy inequality.

The definition of weak solutions with bounded energy is apparently silent about
the pressure field, whose knowledge is, however, necessary to discover the ”low Mach
number” Lighthill acoustic analogy. For the non stationary Navier-Stokes equations
this question is not an elementary problem (see e.g; the survey paper of Galdi [21]). To
complete the proof of Lemma 5.1, we investigate this problem in Section 6.5 following
Ladyzhenskaya [27].

Finally, the weak solutions of the Lighthill acoustic analogy in the sense of Defini-
tion 1.1 are obtained combining the weak solutions of the homogenous wave equation
in the fast time limit constructed in Lemma 4.1 with the weak solutions of the non
stationary Navier Stokes equation obtained in the real-time limit in Lemma 5.1. The
time dependent pressure is responsible for the singular source term ∂tΣ which is equal
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to the distribution − 1
ω ∂tΠ.

In the steady case, when the initial data are well prepared in the sense of Theorem
2.2, the source term ∂tΣ = 0 and we discover the weak formulation of the Lighthill
equations with the right hand side emanating from a weak solution of the steady
incompressible Navier-Stokes problem (2.29), (2.7). The precise formulation of this
result is subject of Theorem 2.2.

The proof is performed in Section 7. Its first part consists of the material of Section
4 and the main auxiliary result serving for the construction of the Lighthill equation
is formulated in Lemma 4.1. As far as the real-time limit, we start by Lemma 5.1,
where we have showed existence of a weak limit in the case of ill-prepared data. We
observe, that the weak solutions with bounded energy constructed in this lemma are
Leray-Hopf solutions, provided the initial data are well prepared. If, in addition, the
initial data are close to a steady state corresponding to the same specific external
force f , the limit appears to be a weak solution of steady Navier-Stokes problem with
the same external force f . Since this solution (as any steady weak solution) satisfies
the Prodi-Serrin conditions, we can identify it with the Leray-Hopf weak solution
constructed in Lemma 5.1. This observations are formulated in Lemmas 7.1–7.2.
Theorem 2.2 is then obtained as a combination of the fast-time limit from Lemma 4.1
and real-time limit obtained in Lemma 7.2.

3 Estimates for real-time and fast-time variables

An immediate consequence of the energy inequality (2.20) is the following lemma:

Lemma 3.1. Under assumptions of Theorem 2.1 the following estimate holds
[ ∫

Ω

(
1
2%εu2

ε + 1
ε2H(%ε)

)
dx

]
(τ) +

∫ τ

0

∫
Ω
S(∇xuε) : ∇uεdxdt

≤ ∫
Ω

(
1
2%εu2

ε,0 + 1
ε2H(%ε,0)

)
dx +

∫ τ

0

∫
Ω

%f · udxdt,

(3.1)

where

H(%) = H(%) + ∂%H(%)(%− %)−H(%) = %γ − γ%γ−1(%− %)− %γ (3.2)

is a strictly convex nonnegative function with minimum at % = %.

Lemma 3.1 implies several estimates; in order to write them in a concise way we
shall introduce, inspired by [17], the essential and residual sets as follows

Mess(t) = {x ∈ Ω | %
2 ≤ %ε(t, x) ≤ 2%}, Mres(t) = R3 \Mess(t).

M̃ess(t) = Mess(εt), M̃res(t) = Mres(εt)
(3.3)

For a function h : Ω → R, there holds

h = [h]ess + [h]res, where [h]ess = h1Mess , [h]res = h1Mres ,

h = [h]fess + [h]fres, where [h]fess = h1M̃ess
, [h]fres = h1M̃res

.
(3.4)

We shall collect the estimates in the following two lemmas. Lemma 3.2 deals with
the estimates of ”real-time” quantities while Lemma 3.3 deals with their ”fast-time”
counterparts.
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Lemma 3.2. Under assumptions of Theorem 2.1 we have the following uniform es-
timates uniformly with respect to ε.

ess sup
t∈(0,T )

|Mres| ≤ cε2, (3.5)

ess sup
t∈(0,T )

∥∥∥
[
%ε (t)

]
res

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.6)

ess sup
t∈(0,T )

∥∥∥
[
%ε(t)− %

]
res

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.7)

ess sup
t∈(0,T )

∥∥∥
[%ε − %

ε
(t)

]
ess

∥∥∥
L2(Ω)

≤ c, (3.8)

ess sup
t∈(0,T )

∥∥∥
[%ε − %

ε
(t)

]
res

∥∥∥
Lp(Ω)

≤ cε
2
p−1, p ≤ γ, (3.9)

ess sup
t∈(0,T )

∥∥∥%ε (t)
∥∥∥

Lγ(Ω)
≤ c, (3.10)

ess sup
t∈(0,T )

‖%εu2
ε (t)‖L1(Ω) ≤ c, (3.11)

ess sup
t∈(0,T )

‖%εuε (t)‖
L

2γ
2+γ (Ω)

≤ c, (3.12)

‖uε‖L2(0,T ;W 1,2(Ω)) ≤ c (3.13)

Lemma 3.3. Under assumptions of Theorem 2.1 we have the following uniform es-
timates uniformly with respect to ε.

ess sup
t∈(0,T/ε)

|M̃res| ≤ cε2, (3.14)

ess sup
t∈(0,T/ε)

∥∥∥
[
rε (t)

]
fres

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.15)

ess sup
t∈(0,T/ε)

∥∥∥
[
rε(t)− %

]
fres

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.16)

ess sup
t∈(0,T/ε)

∥∥∥
[rε − %

ε
(t)

]
fess

∥∥∥
L2(Ω)

≤ c, (3.17)

ess sup
t∈(0,T/ε)

∥∥∥
[rε − %

ε
(t)

]
fres

∥∥∥
Lp(Ω)

≤ ε
2
p−1, p ≤ γ, (3.18)

ess sup
t∈(0,T/ε)

∥∥∥rε (t)
∥∥∥

Lγ(Ω)
≤ c, (3.19)

ess sup
t∈(0,T/ε)

‖rεv2
ε (t)‖L1(Ω) ≤ c, (3.20)

ess sup
t∈(0,T/ε)

‖qε (t)‖
L

2γ
2+γ (Ω)

≤ c, (3.21)

‖vε‖L2(0,T/ε;W 1,2(Ω)) ≤
c√
ε
. (3.22)
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4 Limit passage in fast-time variables and homoge-
nous wave equation

Lemma 4.1. Under assumptions of Theorem 2.1 we have at least for a chosen sub-
sequence of ε → 0+,

∀T > 0, r(1)
ε → r(1) in Cweak([0, T ];Lsγ (Ω)), sγ = min{γ, 2}, (4.1)

∀T > 0, qε → q weakly-∗ in L∞(0, T ;L
2γ

γ+1 (Ω)),

where the fast-time variables r
(1)
ε and qε have been defined in (2.40). Moreover, the

weak limits r(1), q satisfy the homogenous wave equation

∀ϕ ∈ C∞c ([0,∞)× Ω)),

∫∞
0

∫
Ω

(
r(1)∂tϕ + q · ∇xϕ

)
dxdt = − ∫

Ω
%
(1)
0 ϕ(0)dx,

(4.2)

∀ϕ ∈ C∞c ([0,∞)× Ω);R3), ϕ · n = 0 on (0,∞)× ∂Ω,

∫∞
0

∫
Ω

(
q∂tϕ + p′(%)r(1)divϕ

)
dxdt = − ∫

Ω
%0u0 · ϕ(0)dx.

(4.3)

where %
(1)
0 and u0 are defined in (2.38), %0 = % + %

(1)
0 and

r(1)(0) = %
(1)
0 . (4.4)

Proof of Lemma 4.1:
Let ϕ ∈ C∞c ([0,∞) × Ω; R3), ϕ · n|[0,∞)×∂Ω = 0; then there exists ε0 such that

for all 0 < ε < ε0, ϕ ∈ C∞c ([0, T/ε) × Ω). We rewrite (2.19) with the test function
ϕε(t, x) = ϕ(t/ε, x), where ϕε is compactly supported in [0, T )×Ω. After the change
of variables to the fast time variable τ = t

ε , we obtain

∫ T/ε

0

∫
Ω

rεvε · ∂tϕ dxdt+

ε
∫ T/ε

0

∫
Ω
(rεvε ⊗ vε) : ∇xϕ dxdt + 1

ε

∫ T/ε

0

∫
Ω
(rγ

ε − %γ) divϕ dxdt =

ε
∫ T/ε

0

∫
Ω

(
S(∇xvε) : ∇xϕ + rεfε · ϕ

)
dx dt− ∫

Ω
%ε,0uε,0 · ϕ(0, ·) dx,

(4.5)

where
fε(t, x) = f(εt, x).

Similarly, continuity equation (2.17), where we take b = 0, rescaled to the fast time
yields ∫ T/ε

0

∫

Ω

(
r(1)
ε ∂tϕ + rεvε · ∇xϕ

)
dxdt = −

∫

Ω

%
(1)
ε,0ϕ(0, ·)dx (4.6)

where ϕ ∈ C∞c ([0,∞) × Ω)) and 0 < ε < ε0, where ε0 > 0 is so small that ϕ is
supported in [0, T/ε)× Ω.

In virtue of (3.21) and thanks to (4.6), the sequence
{ ∫

Ω

r(1)
ε ϕdx

}
ε>0

, where ϕ ∈ C∞c (Ω),
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is bounded and equi-uniformly continuous subset of C[0, T ] with any T ∈ (0,∞).
Arguing by the Arzela-Ascoli theorem, the separability of Lsγ (Ω) and the diagonal-
ization, keeping in mind estimates (3.17), (3.18), we conclude that

∀T > 0, r(1)
ε → r(1) in Cweak([0, T ];Lsγ (Ω)), (4.7)

at least for a chosen subsequence. Moreover, (4.4) holds.
By virtue of (3.21) we also have

∀T > 0, qε = rεvε → q weakly-∗ in L∞(0, T ;L
2γ

γ+1 (Ω)). (4.8)

This allows to pass to the limit in (4.6) and to get equation (4.2).
Writing

rγ − %γ

ε
=

[rγ − %γ

ε

]
fess +

[rγ − %γ

ε

]
fres =

γ%γ−1
[r − %

ε

]
fess + εγ(γ − 1)zγ−2

[(r − %

ε

)2]fess +
[rγ − %γ

ε

]
fres,

where %/2 ≤ z ≤ 2%, and exploiting (3.14), (3.16), (3.17–3.18), (3.20), we obtain

∀T > 0,
rγ
ε − %γ

ε
→ r(1) weakly in L1(0, T ;L1(Ω)). (4.9)

For a given test function ϕ the upper bound of the time integrals in (4.5) and (4.6)
are independent of ε → 0+. With this observation and with estimates (3.19), (3.20)
and (3.22) in mind, we verify that

ε

∫ T/ε

0

∫

Ω

(rεvε ⊗ vε) : ∇xϕ dxdt → 0

ε

∫ T/ε

0

∫

Ω

S(∇xvε) : ∇xϕ dxdt → 0

ε

∫ T/ε

0

∫

Ω

rεfε · ϕ dx dt → 0.

Now, we are ready to let ε → 0+ in (4.5) to get (4.3). The proof of Lemma 4.1 is
complete.

5 Limit passage in the real-time variables and the
Navier-Stokes equations

Lemma 5.1. Under assumptions of Theorem 2.1 we have at least for a chosen sub-
sequence of ε → 0+,

(i)
uε → U weakly in L2(0, T ;W 1,2(Ω;R3)). (5.1)

Moreover,

U ∈ L∞(0, T ;L2(Ω;R3)) ∩ Cweak([0, T ];L2(Ω;R3)), (5.2)
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divU = 0 a.a. on (0, T )× Ω, u · n|∂Ω = 0 (5.3)

and the integral identity
∫ T

0

∫

Ω

(
%U · ∂tϕ + %(U⊗U) : ∇xϕ

)
dxdt = −

∫ T

0

∫

Ω

%f · ϕdxdt+ (5.4)

∫ T

0

∫

Ω

µ(∇xU +∇⊥x U) : ∇xϕ dx dt−
∫

Ω

%H(u0) · ϕ(0, ·) dx

holds for any test function

ϕ ∈ C∞c ([0, T )× Ω; R3), div ϕ = 0, ϕ · n|[0,T )×∂Ω = 0. (5.5)

In addition, u satisfies the energy inequality
[

1
2%

∫
Ω
|u|2dx

]
(τ) +

∫ τ

0

∫
Ω
S(∇u) : ∇xudxdt

≤ lim infε→0+

[ ∫
Ω

(
1
2%εu2

ε,0 + 1
ε2H(%ε,0)

)
dx

]
+

∫ τ

0

∫
Ω

%f ·Udxdt

(5.6)

for a.a. τ ∈ (0, T ).

In the other words, U is a weak solution with bounded energy (in the sense
of Definition 1.3) to the Navier-Stokes equations (2.21) with slip boundary con-
ditions (2.7) and initial conditions U(0) = H(u0).

(ii) Moreover, if H(u0) satisfies conditions (2.46) then U ∈ W 1, 5
4 (0, T ;L

5
4 (Ω;R3))∩

ÃL
5
4 (0, T ; W 2, 5

4 (Ω)) and there exists a function Π ∈ L
5
4 (0, T ; W 1, 5

4 (Ω)) such that
the couple (Π,U) verifies

%∂tU + %div(U⊗U) +∇Π = µdiv(∇xU +∇T
x U) + %f (5.7)

almost everywhere in (0, T )× Ω.

Lemma 5.2. Let assumptions of Theorem 5.1 be satisfied. Suppose that the initial
data satisfy in addition conditions (2.30–2.32). Then we have:

(i) The energy inequality (5.6) is replaced by

1
2%

∫
Ω
|U|2(τ) dx +

∫ τ

0

∫
Ω

µ
2 (∇xU +∇T

x U) : (∇xU +∇T
x U) dxdt

≤ %
∫ τ

0

∫
Ω

f ·Udxdt + 1
2%

∫
Ω
|u0|2 dx for a.a. τ ∈ (0, T ).

(5.8)

In the other words, U is a Leray-Hopf weak solution (Definition 1.3) to the
Navier-Stokes equations (2.21) with slip boundary conditions (2.7) and initial
conditions U0 = u0.

(ii) Moreover U = U0 ∈ W 2, 3
2 (Ω) and there exists a unique function Π ∈ W 1, 3

2 (Ω),∫
Ω

Πdx = 0 such that

%div(U⊗U)− µdiv(∇xU +∇T
x U) +∇xΠ = %f , (5.9)

almost everywhere in Ω.

Lemma 5.1 will be proved throughout Sections 6.1–6.5. Lemma 5.2 will be proved
in Section 7.
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6 Proof of Lemma 5.1 and Theorem 2.1

6.1 Limits in the density, velocity and momentum

Since %ε satisfies (2.17) with uε on place of u and (3.6–3.10) it is a routine matter to
establish that %ε ∈ C([0, T ]; Lr(Ω), 1 ≤ r < γ and that

%ε → % in L∞(0, T ; Lγ(Ω) and C([0, T ];Lr(Ω)), r ∈ [1, γ), (6.1)

where the second convergence is deduced from the fact that (%ε,uε) satisfies the renor-
malized continuity equation (2.17) with uε obeying the bound (3.13). In accordance
with this bound,

uε → U weakly in L2(0, T ; W 1,2(Ω;R3)), U · n|∂Ω = 0. (6.2)

By virtue of (6.1), (6.2) and (3.12),

%εuε → %U weakly-∗ in L∞(0, T ;L
2γ

γ+1 (Ω; R3)). (6.3)

Thus the limit ε → 0+ in the continuity equation (2.17) yields

divU = 0. (6.4)

Due to the continuity properties of the projections H, H⊥ (see (2.33–2.35)), we con-
clude from (6.2) and (6.4) that

H(uε) → U weakly in L2(0, T ; W 1,2(Ω;R3)),

H⊥(uε) → 0 weakly in L2(0, T ;W 1,2(Ω;R3)).
(6.5)

We deduce from (2.19) that the sequence of functions

t →
[ ∫

Ω

H(%εuε) · ϕdx
]
(t), ϕ ∈ C∞(Ω), ϕ · n|∂Ω = 0

is bounded and equi-uniformly continuous in C[0, T ]. Then, using the Arzela-Ascoli
theorem, separability of L[ 2γ

2γ+1 ]′(Ω;R3) and density plus diagonalization argument,
we obtain

H(%εuε) → %H(U) = %U in Cweak([0, T ];L
2γ

γ+1 (Ω; R3)). (6.6)

For γ > 3
2 , W 1,2(Ω) ↪→↪→ L

2γ
γ+1 (Ω); standard compactness argument then yields

H(%εuε) → %U in L2(0, T ; [W 1,2(Ω;R3)]∗). (6.7)

We also observe that

(%ε − %)uε → 0, H
(
(%ε − %)uε

)
→ 0,

H⊥
(
(%ε − %)uε

)
→ 0 in L2(0, T ; L

6
5 (Ω;R3)),

(6.8)

where we have used (6.1-6.2) and continuity of H,H⊥. Writing

%
(
H(uε)

)2

= H
(
(%ε − %)uε

)
·H(uε) + H(%εuε) ·H(uε)
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we infer due to (6.5), (6.7) and (6.8) that

H(u)ε → H(U) = U in L2(0, T ; L2(Ω;R3)). (6.9)

The projection of the convective term in (2.19) on the divergenceless vector fields
can be written as

∫ T

0

∫
Ω

%εuε ⊗ uε : ∇xϕdxdt =
∫ T

0

∫
Ω

H⊥
(
%εuε

)
⊗H

(
uε

)
: ∇xϕdxdt+

∫ T

0

∫
Ω

H
(
%εuε

)
⊗ uε : ∇xϕdxdt +

∫ T

0

∫
Ω

H⊥
(
%εuε

)
⊗H⊥

(
uε

)
: ∇xϕdxdt,

(6.10)
where

ϕ ∈ C∞c ([0, T )× Ω; R3), div ϕ = 0, ϕ · n|[0,T )×∂Ω = 0. (6.11)

By virtue of (6.2) and (6.7)
∫ T

0

∫

Ω

H
(
%εuε

)
⊗ uε : ∇xϕdxdt →

∫ T

0

∫

Ω

%U⊗U : ∇xϕdxdt.

Further ∫ T

0

∫

Ω

H⊥
(
%εuε

)
⊗H

(
uε

)
: ∇xϕdxdt =

∫ T

0

∫

Ω

H⊥
(
(%ε − %)uε

)
⊗H

(
uε

)
: ∇xϕdxdt + %

∫ T

0

∫

Ω

H⊥(uε)⊗H(uε) : ∇xϕdxdt,

where the first term tends to 0 due to (6.5) and (6.8), while the second one converges
to 0 by virtue of (6.5) and (6.9).

Thus, we have
∫ T

0

∫

Ω

%εuε ⊗ uε : ∇xϕdxdt →
∫ T

0

∫

Ω

%U⊗U : ∇xϕdxdt (6.12)

for all ϕ belonging to (6.11) provided we show
∫ T

0

∫

Ω

H⊥
(
%εuε

)
⊗H⊥

(
uε

)
: ∇xϕdxdt → 0 (6.13)

with any ϕ in (6.11). In classical interpretation the last identity means that

div
[
H⊥

(
%εuε

)
⊗H⊥

(
uε

)]

as ε → 0 becomes a gradient.
We shall devote to the proof of (6.13) the next two paragraphs.

6.2 Wave equation in real time and its spectral analysis

Following Schochet [41] and Lions-Masmoudi [30] we rewrite equations (2.17) (with
b = 0) and (2.19) as a wave equation

∀ϕ ∈ C∞c ((0, T )× Ω)),

∫ T

0

∫
Ω

(
ε%

(1)
ε ∂tϕ + zε · ∇xϕ

)
dxdt = 0

(6.14)
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∀ϕ ∈ C∞c ((0, T )× Ω; R3), ϕ · n = 0 on (0, T )× ∂Ω,

∫∞
0

∫
Ω

(
εzε∂tϕ + p′(%)%(1)

ε divϕ
)
dxdt =

ε
∫ T

0

∫
Ω

(
− Tε : ∇ϕ− Fε · ϕ + gεdivϕ

)
dxdt,

(6.15)

where we have set
%(1)

ε =
%ε − %

ε
, zε = %εuε (6.16)

and
Tε = %εuε ⊗ uε − S(∇uε), Fε = %εf ,

gε =
(
γ%γ−1 1

ε

[
%ε−%

ε

]
res
− γ(γ − 1)zγ−2

[(
%ε−%

ε

)2]
ess
−

1
ε

[
%γ

ε−%γ

ε

]
res

)
, z ∈ (%/2, 2%).

(6.17)

To identify the basic modes of (6.14), (6.15), we are naturally led to the eigenvalue
problem

∇xω = λV, divV = λω in Ω, V · n|∂Ω = 0, (6.18)

which is equivalent to the eigenvalue problem for the Laplace operator

∆ω = −Λω, in Ω, ∇xω · n|∂Ω = 0, λ2 = −Λ. (6.19)

The latter problem admits in L2(Ω) a system of real eigenfunctions {ωj,m}∞,mj

j=0,m=1,
which forms an orthonormal basis in L2(Ω), corresponding to real eigenvalues

(Λ0 =)Λ0,1 = 0, ω0 = ω0,1 = 1/|Ω| and m0 = 1,

0 < Λ1,1 = . . . = Λ1,m1 = (Λ1) < Λ2,1 = . . . = Λ2,m2(= Λ2) < . . . ,
(6.20)

where mj denotes the multiplicity of the eigenvalue Λj .
Accordingly, the original system (6.18) admits solutions

Vj,m = −i(
√

Λj)−1∇ωj,m, λj = i
√

Λj , where j = 1, 2, . . .,

λ0 = 0, with eigenspace L̇(Ω) = H(L2(Ω;R3)),
(6.21)

meaning that

L2(Ω; R3) = H(L2(Ω;R3))⊕H⊥(L2(Ω; R3)),

where H⊥(L2(Ω;R3)) = {span{iVj,m}∞,mj

j=1,m=1}
L2(Ω;R3)

.

(6.22)

In the sequel we denote, for a ∈ L1(Ω), z ∈ L1(Ω;R3),

[a]j,m =
∫

Ω

aωj,mdx, [z]j,m =
∫

Ω

z ·Vj,mdx (6.23)

and

{a}M =
∑

{j>0|Λj≤M}

mj∑
m=1

[a]j,mωj,m, {z}M =
∑

{j>0|Λj≤M}

mj∑
m=1

[z]j,mVj,m, (6.24)

21



where M is a fixed integer.
Since ωj,m, Vj,m are smooth functions on Ω and Vj,m ·n|∂Ω = 0, we can use them

as test functions in (6.14–6.15) to obtain

ε∂t[%
(1)
ε ]j,m + i

√
Λj [zε]j,m = 0,

ε∂t[zε]j,m + i
√

Λjp
′(%)[%(1)

ε ]j,m = εAj,m
ε

(6.25)

where

Aj,m
ε =

∫

Ω

(
− Tε : ∇Vj,m − %εf ·Vj,m + gεdivVj,m

)
dx is bounded in L2(0, T ).

Finally multiplying the first equation in (6.25) by ωj,m and the second one by Vj,m,
we get after some calculus





ε∂t{%(1)
ε }M + div{zε}M = 0,

ε∂t{zε}M + p′(%)∇x{%(1)
ε }M = εaε,M ,





a.e. in (0, T )× Ω, (6.26)

where

aε,M =
∑

{j>0|Λj≤M}

mj∑
m=1

Aj,m
ε Vj,m is bounded in L2(0, T ; Ck(Ω; R3)), k ∈ N

(6.27)
for any fixed natural number M , uniformly with respect to ε → 0.

6.3 Treatement of the convective term

As far as term (6.13) is concerned, we can write

H⊥(zε)⊗H⊥(uε) =
[{

H⊥(zε)
}

M
+

[
H⊥(zε)−

{
H⊥(zε)

}
M

]]

⊗
[{

H⊥(uε)
}

M
+

[
H⊥(uε)−

{
H⊥(uε)

}
M

]]
.

(6.28)

We have
H⊥(zε)−

{
H⊥(zε)

}
M

=
[
H⊥

(
(%ε − %)uε

)
−

{
H⊥

(
(%ε − %)uε

)}
M

]
+ %H⊥(uε)− %

{
H⊥(uε)

}
M

,

where, according to (6.8),
[
H⊥

(
(%ε − %)uε

)
−

{
H⊥

(
(%ε − %)uε

)}
M

]
→ 0 in L2(0, T ; L

6
5 (Ω)).

Furthermore, in agreement with (6.18-6.22),

‖divuε‖2L2(Ω) =
∥∥∥
∞∑

j=1

mj∑
m=1

[uε]j,mdivVj,m

∥∥∥
2

L2(Ω)
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=
∥∥∥
∞∑

j=1

mj∑
m=1

[uε]j,m
√

Λjωj,m

∥∥∥
2

L2(Ω)
=

∞∑

j=1

mj∑
m=1

Λj [uε]2j,m;

whence

‖H⊥(uε)− {H⊥(uε)}M‖L2(Ω) =
∑

{j>0|Λj>M}

mj∑
m=1

[uε]2j,m ≤ 1
M
‖divuε‖2L2(Ω). (6.29)

In view of these observations, the proof of (6.13) reduces to showing
∫ T

0

∫

Ω

{
H⊥

(
zε

)}
M
⊗

{
H⊥

(
uε

)}
M

: ∇xϕdxdt → 0

or equivalently, due to (6.1), (6.8)
∫ T

0

∫

Ω

{
H⊥

(
zε

)}
M
⊗

{
H⊥

(
zε

)}
M

: ∇xϕdxdt → 0, (6.30)

for any divergenceless ϕ as in (6.11).
By virtue of (6.21-6.22), {H⊥(zε)}M = ∇xΨε and identity (6.26) can be rewritten

ε∂tdε + ∆Ψε = 0,

ε∂t∇Ψε + p′(%)∇dε = εaε,M ,
(6.31)

where

Ψε = i
∑

{j>0|Λj≤M}

mj∑
m=1

[zε]j,m
√

Λjωj,m, dε =
∑

{j>0|Λj≤M}

mj∑
m=1

[%(1)
ε ]j,mωj,m. (6.32)

With this notation, and recalling that dε is bounded in W 1,∞(0, T ;Ck(Ω)) and Ψε in
L∞(0, T ; Ck(Ω)) ∩W 1,2(0, T ;Ck(Ω)), k ∈ N , as a consequence of (6.23), (6.25), we
can rewrite (6.30) as the following chain of identities:
∫ T

0

∫
Ω

{
H⊥

(
zε

)}
M
⊗

{
H⊥

(
zε

)}
M

: ∇xϕdxdt =
∑3

j,k=1

∫ T

0

∫
Ω

∂kΨε∂jΨε∂jϕkdxdt

= 1
2

∑3
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt +
∑3

k=1

∫ T

0

∫
Ω

∂kΨε∆Ψεϕkdxdt

= 1
2

∑3
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt− ε
∑3

k=1

∫ T

0

∫
Ω

∂kΨε∂tdεϕkdxdt

= 1
2

∑3
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt− ε
∑3

k=1

∫ T

0

∫
Ω

∂t

(
∂kΨεdε

)
ϕkdxdt

+ε
∑3

k=1

∫ T

0

∫
Ω

∂t(∂kΨε)dεϕkdxdt =

= 1
2

∑3
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt + ε
∑3

k=1

∫ T

0

∫
Ω

∂kΨεdε∂tϕkdxdt

− 1
2p′(%)

∑3
k=1

∫ T

0

∫
Ω

∂k|dε|2ϕkdxdt + ε
∫ T

0

∫
Ω

dεaε,M · ϕdxdt

= ε
∑3

k=1

∫ T

0

∫
Ω

∂kΨεdε∂tϕk + ε
∫ T

0

∫
Ω

dεaε,M · ϕdxdt,
(6.33)

where we have used several times equations (6.31) and the properties (6.11) of ϕ. By
virtue of (6.27) the right hand side of this chain of identities tends to 0 as ε → 0.
Proof of the limit (6.13) and of the part (i) of Lemma 5.1 is complete.
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6.4 Incompressible energy inequality

We can rewrite (3.1) to the form

∫ T

0
η′(s)

∫
Ω

1
2%εu2

εdxds +
∫ T

0
η′(s)

∫ s

0

∫
Ω
S(∇xuε) : ∇uεdxdtds

≤ ∫ T

0
η′(s)

∫
Ω

(
1
2%εu2

ε,0 + 1
ε2H(%ε,0)

)
dxds +

∫ T

0
η′(s)

∫ s

0

∫
Ω

%εf · uεdxdtds,

(6.34)

where η ∈ C∞c ([0, T )), η ≤ 0, η′ ≥ 0. Due to (6.1–6.2) and (3.11),
√

%εuε →
√

%U weakly in L∞(0, T ; L2(Ω)). (6.35)

Letting ε → 0+ in (6.34), taking advantage of (6.2), (6.35), the lower weak continuity
at the left hand side and (6.3) at the right hand side, we get

∫ T

0
η′

∫
Ω

1
2%U2dxds +

∫ T

0
η′(s)

∫ s

0

∫
Ω
S(∇xU) : ∇Udxdtds

≤ lim infε→0+

[ ∫∞
0

η′
∫
Ω

(
1
2%εu2

ε,0 + 1
ε2H(%ε,0)

)
dxds

]
+

∫ T

0
η′

∫ s

0

∫
Ω

%f ·Udxdtds.

(6.36)
By choosing properly η’s we deduce by standard arguments (5.6).

6.5 Reconstruction of pressure in the non steady case

In this Section we complete the proof of Lemma 5.1 by reconstructing the pressure.
The reconstruction of pressure in the non steady case will be based on the maximal
Lp − Lp regularity to the non stationary Stokes system

∂tU +∇Π = µdiv(∇xU +∇⊥x U) + F a. e. in (0, T )× Ω

divU = 0, a. e. in (0, T )× Ω
(6.37)

endowed with the initial conditions

U(0, x) = U0(x), x ∈ Ω (6.38)

and boundary conditions

U · n|∂Ω = 0, (∇xU +∇⊥x U)n× n|∂Ω = 0 a.e. in (0, T ) (6.39)

in the sense of traces on ∂Ω. The theorem reads:

Lemma 6.1. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1), 1 < p < ∞,
µ > 0. Suppose that

F ∈ Lp((0, T )× (Ω;R3), U0 ∈ W 2− 2
p ,p(Ω; R3), divU0 = 0,

U0 · n|∂Ω = 0 if 1− 3
p < 0,

where W 2− 2
p ,p(Ω; R3) denotes the Sobolev-Slobodeckii space.

Then the problem (6.37–6.39) admits a solution (Π,U), unique in the class

U ∈ Lp(0, T ;W 2,p(Ω; R3)), ∂tU ∈ Lp(0, T ;Lp(Ω; R3)),

U ∈ C([0, T ]; W 2− 2
p ,p(Ω;R3)), Π ∈ Lp(0, T ; W 1,p(Ω)),

∫
Ω

Πdx = 0.
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Moreover, there exists a positive constant c = c(p, q, Ω, T, µ) such that

‖U(t)‖
W

2− 2
p

,p
(Ω;R3)

+ ‖∂tU‖Lp(0,T ;Lp(Ω;R3))

+‖div(∇xU +∇⊥x U)‖Lp(0,T ;Lp(Ω;R3)) + ‖∇Π‖Lp((0,T )×Ω;R3) (6.40)

≤ c(‖F‖Lp((0,T )×Ω;R3) + ‖U0‖
W

2− 2
p

,p
(Ω;R3)

),

for any t ∈ [0, T ].

The original formulation and proof of this result in is due to Solonnikov [45]. For
the more general Lp − Lq-versions see e.g. Shibata, Shimizu [44] or Saal, [40].

Remark: The reader shall notice that the bounds for div(∇xU +∇⊥x U) and for
U in (6.40) imply in addition

‖U‖Lp(0,T ;W 2,p(Ω;R3)) ≤ c(‖F‖Lp((0,T )×Ω;R3) + ‖U0‖
W

2− 2
p

,p
(Ω;R3)

) (6.41)

via a standard uniqueness Agmon, Douglis, Nirenberg argument and the Lp version
of the Korn inequality.

Coming back to the proof, we rewrite identity (5.4) in the form

∫ T

0

∫
Ω

(
%U · ∂tϕ + µU · div(∇xϕ +∇⊥x ϕ)

)
dxdt

=
∫ T

0

∫
Ω

G · ϕ dxdt− ∫
Ω

%H(U0) · ϕ(0, x) dx,

(6.42)

where
G = %U · ∇xU− %f

and
ϕ ∈ C∞c ([0, T )× Ω;R3), ϕ · n|[0,T )×∂Ω = 0,

(∇xϕ +∇⊥x ϕ)n× n|[0,T )×∂Ω = 0, divϕ = 0.
(6.43)

We compare U with V the unique strong solution of the Stokes problem

%∂tV − µdiv(∇xV +∇⊥x V) +∇xΠ = −G,

divV = 0, V(0, x) = [(H(u0)](x),

V · n|∂Ω = 0
(
(∇xV +∇T

x V)n
)× n|∂Ω = 0 a.e. in (0, T ).

(6.44)

Due to (5.1–5.2), G ∈ L
5
4 ((0, T ) × Ω)); whence Theorem 6.1 affirms, in particular,

that

V ∈ C([0, T ];L
5
4 (Ω;R3)) ∩ L

5
4 (0, T ; W 2, 5

4 (Ω;R3)),

∂tV ∈ L
5
4 ((0, T )× Ω; R3)), Π ∈ L

5
4 (0, T ; L

5
4 (Ω)),

∫
Ω

Πdx = 0.

(6.45)

Subtracting (6.42) and (6.44) we obtain
∫ T

0

∫

Ω

(
%(U−V) · ∂tϕ + µ(U−V)div(∇xϕ +∇T

x ϕ)
)

dxdt = 0 (6.46)
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with any ϕ such that

divϕ = 0,

ϕ ∈ ∩r∈(1,∞)L
r(0, T ; W 2,r(Ω;R3)), ∂tϕ ∈ ∩r∈(1,∞)L

r((0, T )× Ω; R3),

ϕ(T, x) = 0, x ∈ Ω,

ϕ · n|∂Ω = 0, (∇xϕ +∇T
x ϕ)n× n|∂Ω = 0 a.e.in (0, T ),

(6.47)

where the last two identities are satisfied in the sense of traces. In order to enlarge
the set of test functions from (6.43) to (6.47), we have employed (5.1–5.3), (6.45) and
density argument.

In view of Theorem 6.1 we can use in (6.46) any test function ϕ, ϕ(t, x) = φ(T −
t, x), where (p, φ) solves the Stokes problem

%∂tφ− µdiv(∇xφ +∇T
x φ) +∇xp = F, divφ = 0, a.e. in (0, T )× Ω,

φ(0, x) = 0, x ∈ Ω,

φ · n|∂Ω = 0, (∇xφ +∇T
x φ)n× n|∂Ω = 0 a.e.in (0, T ),

where F ∈ C∞c ((0, T )× Ω; R3). We thus get

∫ T

0

∫

Ω

(U−V) · Fdxdt = 0 for all F ∈ C∞c ((0, T )× Ω; R3),

where we have used the fact that
∫ T

0

∫
Ω

U · ∇xp dxdt =
∫ T

0

∫
Ω

V · ∇xp dxdt = 0.
Therefore U = V. This completes the proof of identity (5.7) as well as of the whole
Lemma 5.1.

6.6 Conclusion

Combining the ”fast” time solutions constructed in Lemma 4.1 with the ”real” time
solutions of Lemma 5.1 finishes the proof of Theorem 2.1.

7 Proof of Lemma 5.2 and Theorem 2.2

7.1 Prodi-Serrin conditions

Sequences %ε, uε, r
(1)
ε , qε satisfy assumptions of Theorem 2.1. They therefore admit

limits %, U, r(1), q in the sense (2.41–2.44); r(1), q satisfy equations (4.2) and (4.3)
of Lemma 4.1, while U verifies equation (5.4) and inequality (5.6), where

lim inf
ε→0+

[ ∫

Ω

(1
2
%εu2

ε,0 +
1
ε2
H(%ε,0)

)
dx

]
+

∫ τ

0

∫

Ω

%f ·Udxdt =
∫

1
2
%|u0|2 dx.

Therefore, U is a Leray-Hopf weak solution of problem (2.21), (2.7) with initial data
U0 = u0.

At this place, we recall the celebrated Prodi-Serrin uniqueness conditions for the
Navier-Stokes equations (cf. Serrin [43]).
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Lemma 7.1. Let v and w be two weak solutions of Navier-Stokes equations (2.21)
with boundary conditions (2.7) and the same initial conditions. Let v be a Leray-Hopf
weak solution and

w ∈ Lr(0, T ;Ls(Ω;R3)), for some r, s such that 3
s + 2

r = 1, s ∈ (3,∞).

Then v = w.

We apply this lemma with v = U and w = u0. We already know that U is a Leray-
Hopf weak solution with initial conditions u0. Recall that u0 verifies (2.30 − 2.31)
meaning that w is a weak solution of the nonstationary problem with initial data
w(0) = u0. Moreover, being time independent, w belongs to L∞(0, T ;L6(Ω;R3)) and
verifies therefore the Prodi-Serrin conditions. Lemma 7.1 yields v = w or equivalently
U = u0.

7.2 Reconstruction of the pressure in the steady case

At this place make a pause to introduce natural spaces useful for the investigation of
pressure in the Navier-Stokes equations (2.21) with boundary conditions (2.7), and
to list some of their properties needed in the sequel.

For 1 ≤ p < ∞, we set

W 1,p
n (Ω; R3) = {z ∈ W 1,p(Ω;R3) | z · n|∂Ω = 0}

a closed subspace of W 1,p(Ω;R3) and by

Ẇ 1,p
n (Ω; R3) = {z ∈ W 1,p(Ω;R3) | z · n|∂Ω = 0, divz = 0}.

The set
C2,ν

c,n = {z ∈ C2,ν(Ω; R3) | z · n|∂Ω = 0}
is dense in W 1,p

n (Ω; R3) and the set

Ċ2,ν
c,n = {z ∈ C2,ν(Ω; R3) | z · n|∂Ω = 0, divz = 0}

is dense in Ẇ 1,p
n (Ω; R3), see e.g. [18, Section 10.7].

The functional

F : W 1,2
n (Ω) → R defined by

Fτ (ϕ) =
∫
Ω

%(u(τ)− u0) · ϕdx+

∫ τ

0

∫
Ω

[(
µ(∇xu +∇⊥x u)− %(u⊗ u)

)
: ∇xϕ− %f · ϕ

]
dxdt

(7.1)

is a continuous linear functional on W 1,2
n (Ω;R3) vanishing on Ẇ 1,2

n (Ω; R3).
Now, we shall recall several facts from functional analysis of (unbounded) lin-

ear operators. Let A : X → Y , where X and Y are Banach spaces, be a linear
(unbounded) closed and densely defined operator. Denote A∗ : Y ∗ → X∗ its ad-
joint, where X∗ and Y ∗ are duals to X and Y , respectively. It is well known, that
ker(A) = (R(A∗))⊥, ker(A∗) = (R(A))⊥, and also (R(A)) = (ker(A∗))⊥ provided
R(A) is closed (in Y ), (R(A∗)) = (ker(A))⊥ provided R(A∗) is closed (in X∗), see
eg Brezis [7]. Thus, if a continuous linear functional F : X → R vanishes on ker(A)
then F ∈ (ker(A))⊥ = R(A∗), provided the last subspace is closed (in X∗).
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Next, we mention some properties of the Bogovskii solution operator to the prob-
lem divz = g, [5]. We shall need the following facts. For any bounded Lipschitz
domain, there exists a linear operator B with the following properties:

•
B : Lp(Ω) := {g ∈ Lp(Ω) |

∫

Ω

zdx = 0} → W 1,p
0 (Ω, R3), ∀1 < p < ∞; (7.2)

•
divB(g) = g, ∀g ∈ Lp(Ω); (7.3)

•
‖B(g)‖W 1,p(Ω) ≤ c(p, Ω)‖g‖Lp(Ω), ∀g ∈ Lp(Ω); (7.4)

•
If g ∈ C∞c (Ω) := {g ∈ C∞c (Ω) | ∫

Ω
gdx = 0} then B(g) ∈ C∞c (Ω). (7.5)

Such operator can be constructed explicitly; we refer to Galdi [20] or to [38],
Section 3.3 for more details and further properties.

The operator A = div from X = W 1,p
n (Ω;R3) to Y = Lp(Ω) with D(A) =

W 1,p
n (Ω;R3), ker(A) = Ẇ 1,p

n (Ω; R3), R(A) = Lp(Ω) is a continuous operator (hence
R(A) is closed). (The surjectivity of A onto Lp(Ω) follows form the property (7.3) of
the Bogovskii operator.) Therefore, for all v ∈ W 1,p

n (Ω;R3), ψ ∈ C∞c (Ω) dense subset
of Y ∗ = Lp′(Ω), we have

< ψ , Av >Y ∗,Y =
∫

Ω

ψdivvdx =
∫

Ω

v · ∇xψdx =< A∗ψ , v >X∗,X . (7.6)

The last identity implies that A∗ : Lp′(Ω) → (W 1,p
n (Ω;R3))∗ is continuous with

D(A∗) = Lp′(Ω) and a range R(A∗) closed in (W 1,p
n (Ω;R3))∗.

We apply this result to the linear functional

F : W 1,2
n (Ω) → R,

F(ϕ) =
∫

Ω

[(
µ(∇xu +∇⊥x u)− %u⊗ u

)
: ∇xϕ− %f · ϕ

]
dx.

and obtain existence of Π ∈ L2(Ω),
∫
Ω

Πdx = 0 such that F(ϕ) =
∫
Ω

Πdivϕdx. We
thus have

Lemma 7.2. Let u0 satisfy (2.30), (2.31). Then there exists a unique

Π ∈ L2(Ω),
∫

Ω

Πdx = 0

such that
∀ϕ ∈ C∞c ((0, T )× Ω), ϕ · n|(0,T )×∂Ω,

∫ T

0

∫
Ω

(
%u0 ⊗ u0 − µ(∇xu0 +∇⊥x u0)

)
: ∇xϕdxdt

+
∫ T

0

∫
Ω

Πdivϕdxdt = − ∫ T

0

∫
Ω

%f · ϕdxdt.

(7.7)

Now, regarding (7.7) as a (steady) Stokes problem with the right hand side
−%u0 · ∇xu0 ∈ L

3
2 (Ω;R3), we may use the standard regularity results for the Stokes

problem combined with the uniqueness (cf. e.g. Galdi [20]) to conclude that u0 must
necessarily belong to W 2, 3

2 (Ω;R3) and Π to W 1, 3
2 (Ω).
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7.3 Conclusion

Now, we conclude the proof of Theorem 2.2 by replacing in (4.2) r(1) by r(1) −
(p(%))−1Π (Π being time independent,

∫ T

0

∫
Ω

Π∂tϕdxdt = 0) and by subtracting (7.7)
from equation (4.3).
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[39] A. Novotný and I. Straškraba. Introduction to the mathematical theory of com-
pressible flow. Oxford University Press, Oxford, 2004.

[40] J. Saal. Maximal regularity for the Stokes system on non cylindrical space-time
domains. J. Math. Soc. Japan, 58(3):617–641, 2006.

[41] S. Schochet. Fast singular limits of hyperbolic PDE’s. J. Differential Equations,
114:476–512, 1994.

[42] S. Schochet. The mathematical theory of low Mach number flows. M2ANMath.
Model Numer. anal., 39:441–458, 2005.

[43] J. Serrin. The initial value problem for the Navier–Stokes equations. University
of Wisconsin Press, 9:69, 1963.

[44] Y. Shibata and Shimizu S. On the lp − lq maximal regularity the Neumann
problem for the Stokes equations in a bounded domain. J. Reine Angew. Math.,
615:157–209, 2008.

[45] V. A. Solonnikov. Estimates for solutions of nonstationary navier-stokes equa-
tions. J. Sov. Math., 8:467–529, 1977.

[46] C Wagner, T. Huttl, and P. Sagaut. Large-eddy simulation for acoustics. Cam-
bridge University Press, Cambridge, 2007.

31


