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Abstract. The compactness of weak solutions to the magnetohydrodynamic equa-
tions for the viscous, compressible, heat conducting fluids is considered in both the
three-dimensional space R3 and the three-dimensional periodic domains. The viscosi-
ties, the heat conductivity as well as the magnetic coefficient are allowed to depend on
the density, and may vanish on the vacuum. This paper provides a different idea from
[15] to show the compactness of solutions of viscous, compressible, heat conducting
magnetohydrodynamic flows, derives a new entropy identity, and shows that the limit
of a sequence of weak solutions is still a weak solution to the compressible magnetohy-
drodynamic equations.

1. Introduction

Magnetohydrodynamics (MHD) is the theory of the macroscopic interaction of electri-
cally conducting fluids with magnetic fields. It has a very broad range of applications. It
is of importance in connection with many engineering problems, such as sustained plasma
confinement for controlled thermonuclear fusion, liquid-metal cooling of nuclear reactors,
and electromagnetic casting of metals. It also finds applications in geophysics and astron-
omy, where one prominent example is the so-called dynamo problem, that is, the question
of the origin of the Earth’s magnetic field in its liquid metal core.

Due to their practical relevance, MHD problems have long been the subject of intense
cross-disciplinary research, but except for relatively simplified special cases, the rigorous
mathematical and numerical analysis of such problems remains open. In the viscous in-
compressible case, MHD flow is governed by the Navier-Stokes equations and the Maxwell
equations of the magnetic field. For the mathematical analysis in incompressible MHD
equations, see [8, 12, 22] and the references therein. In the compressible case, the math-
ematical analysis is much more complicated, due to the oscillation of the density, the
concentration of the temperature, and the coupling interaction of hydrodynamics with the
magnetic field. The full system of the three-dimensional magnetohydrodynamic equations
in the Eulerian coordinates can be read as follows([17, 18]):

ρt + div(ρu) = 0, (1.1a)

(ρu)t + div (ρu⊗ u) +∇p = (∇×H)×H + divΨ, (1.1b)

Et + div(u(E ′ + p)) = div((u×H)×H + νH× (∇×H) + uΨ + κ∇θ), (1.1c)

Ht −∇× (u×H) = −∇× (ν∇×H), divH = 0, (1.1d)

where Ψ = 2µD(u) + λ divu I with 3λ + 2µ ≥ 0 and D(u) = 1
2 (∇u + (∇u)>) denotes the

strain rate tensor; ρ denotes the density, u ∈ R3 the velocity, H ∈ R3 the magnetic field,
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and θ the temperature; E is the total energy given by

E = ρ

(
e +

1
2
|u|2

)
+

1
2
|H|2 and E ′ = ρ

(
e +

1
2
|u|2

)
,

with e the internal energy, 1
2ρ|u|2 the kinetic energy, and 1

2 |H|2 the magnetic energy. The
equations of state p = p(ρ, θ), e = e(ρ, θ) relate the pressure p and the internal energy e
to the density and the temperature of the flow; I is the 3× 3 identity matrix, and (∇u)>

is the transpose of the matrix ∇u. ν(ρ, θ) is the magnetic field coefficient, κ = κ(ρ, θ) is
the heat conductivity. In general, equations (1.1a), (1.1b), (1.1c) denote the conservations
of mass, momentum, and energy, respectively. The equation (1.1d) is called the induction
equation, and the electric field can be written in terms of the magnetic field H and the
velocity u,

E = ν∇×H− u×H.

Although the electric field E does not appear in the MHD system (1.1a)-(1.1d), it is indeed
induced according to the above relation by the moving conductive flow in the magnetic
field.

In this paper, we are interested in the compactness of weak solutions to the compressible
MHD equations (1.1) both in the three-dimensional space R3 and in the three-dimensional
periodic domains. As it is well-known, the motivation of considering the compactness
of weak solutions is to show the existence of weak solutions and the stability of weak
solutions of nonlinear problems. In the literature, there have been a lot of studies on
MHD by physicists and mathematicians because of its physical importance, complexity,
rich phenomena, and mathematical challenges; see [4, 5, 7, 9, 11, 13, 14, 15, 16, 18, 24] and
the references cited therein. For instance, the smooth global solution near the constant
state in one-dimensional case is investigated in [16]. However, many fundamental problems
for compressible MHD with large, discontinuous initial data are still open.

Positive results on the existence of weak solutions with large, discontinuous data for
compressible MHD equations have been obtained recently in [14, 15], specially in [15] for
full compressible MHD equations with temperature-dependent viscosities. More precisely,
it was shown in [15], under certain structural hypotheses imposed on the pressure p and
the heat conductivity coefficient κ, that the full compressible MHD system admits at
least a global-in-time variational solution for large initial data. Those solutions satisfy
the equations (1.1a), (1.1b), (1.1d) in the sense of distributions while the thermal energy
equation (1.1c) is being replaced by two inequalities to be accordance with the second law
of thermodynamics. This approach is in the spirit of the concept of weak solutions with
a defect measure introduced by several authors in different contexts, see [6]. However,
in order to obtain the estimates on the gradient of the velocity, the works in [14, 15] do
rely strongly on the assumption that the shear viscosity µ is bounded below by a positive
constant.

Our aim, in this paper, is to show the compactness of weak solutions to the full com-
pressible MHD equations with viscosity coefficients vanishing on the vacuum both in the
three-dimensional space R3 and in the three-dimensional periodic domains. Although the
periodic case does not correspond to a physical configuration, its mathematical treatment is
technically easier, while it retains the main mathematical difficulties of the problem of the
flow. More importantly, in our context, the viscosities µ, λ, the heat conductivity κ, and
the magnetic coefficient ν can be allowed to depend on the density ρ and the temperature θ
of the flow. We remark that the similar problems for the compressible Navier-Stokes equa-
tions have been studied in [1, 2, 3, 21]. Comparing with those works on the compressible
Navier-Stokes equations, we will encounter extra difficulties in studying the compressible
MHD equations. More precisely, besides the possible oscillation of the density and the
concentration of the temperature, the appearance of the magnetic field and the coupling
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effect between the hydrodynamic flow and the magnetic field should also been taken into
consideration.

The novelty of this paper is to provide a new method to deal with the vanishing viscosities
for compressible MHD flows. The loss of positivity of the viscosity coefficients implies that
there is no hope to obtain directly the uniform bound on the gradient of the velocity.
It is well known that the main difficulty, in proving the compactness of weak solutions
of compressible MHD equations, is to pass to the limit for the nonlinear terms. In our
context, the new kind of entropy equality will provide the estimates on the gradient of the
density, which makes the nonlinear terms much easier to be dealt with and also give rise
to a new estimate of ρu2 in a functional space better than L∞([0, T ]; L1(Ω)). In other
words, although the regularity on the velocity that we can get directly is much lower, the
regularity on the density in our context is much higher. To achieve this aim, the entropy
equation (3.9) and the thermal equation (4.2) need to be taken into consideration. But,
unfortunately, the case with constant viscosity coefficients is excluded from our setting and
the extension to the general case in which the viscosity coefficients depend on both the
density and the temperature seems also out of the reach of our present work.

We organize the rest of this paper as follows. In Section 2, we will give the hypotheses
in detail, introduce the definition of weak solutions, and state our compactness result
(Theorem 2.1). In Section 3, we will derive the a priori estimates and a new kind of the
entropy identity. In Section 4, some auxiliary integrability lemmas are showed. Finally, we
will finish the proof of Theorem 2.1 in Section 5 using Aubin-Lions Lemma.

2. Assumptions and the Main Result

To our best knowledge, the rigorous mathematical analysis for compressible flows is
beyond the available mathematical framework. Hence, we need add some restrictions to
viscosity coefficients µ, λ, the heat conductivity κ and the magnetic coefficient ν.

2.1. Assumptions. To begin with, we assume that µ(ρ) and λ(ρ) are two C1(0,∞) func-
tions satisfying

λ(ρ) = 2(ρµ′(ρ)− µ(ρ)). (2.1)

As seen later on, this relation is fundamental to get higher regularity on the density. More
precisely, with the help of this relation, we can show a new kind of entropy equality, which
then gives the uniform bound on the gradient of the density. Next, due to our technical
restrictions, we will need the following constraints: µ(0) = 0 and there exist positive
constants c0, c1, A and m > 1, 2/3 < β < 1 such that

{
for all s < A, c0s

β−1 ≤ µ′(s) ≤ sβ−1

c0
and 3λ(s) + 2µ(s) ≥ c0s

β ,

for all s ≥ A, c1s
m−1 ≤ µ′(s) ≤ sm−1

c1
and c1s

m ≤ 3λ(s) + 2µ(s) ≤ sm

c1
.

(2.2)

Observing that the assumption (2.2) implies that µ′(ρ) > 0 for ρ > 0.
The heat conductivity coefficient κ is assumed to satisfy

κ(ρ, θ) = κ0(ρ, θ)(ρ + 1)(θa + 1), (2.3)

where a ≥ 2, and κ0 is a C0(R2
+) function satisfying for all positive ρ and θ,

c2 ≤ κ0(ρ, θ) ≤ 1
c2

,

for some positive constant c2.
For the pressure, we assume that the equations of state are of ideal polytropic gas type

p = ρθ + pe(ρ), e = cνθ + Pe(ρ), (2.4)
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with Pe(ρ) =
∫ ρ

1
pe(ξ)/ξ2dξ. We also require that pe(ρ) satisfies

{
c3ρ

−l−1 ≤ p′e(ρ) ≤ 1
c3

ρ−l−1, if 0 ≤ ρ < A0,

p′e(ρ) ≤ c4ρ
k−1, if ρ > A0,

(2.5)

for some A0 > 0, c3 > 0, c4 > 0, l > 2β(3m−2)
m−1 − 1, and k ≤ (

m− 1
2

) 5(l+1)−6β
l+1−β .

For the magnetic coefficient, we need the following assumption:

ν(ρ, θ) ≥ c5
θ

ρ
on {ρ > 0}, 1

c6
≥ ν(ρ, θ) ≥ c6, (2.6)

for some c5 > 0, c6 > 0.

2.2. Main Result. Before we state the compactness result, we need to specify the def-
inition of weak solutions which we will address. It is necessary to require that the weak
solutions should satisfy the natural energy estimates and from the viewpoint of physics,
the conservation laws on mass, momentum and energy also should be satisfied at least
in the sense of distributions. Based on those considerations, the definition of reasonable
global-in-time weak solutions goes as follows.

Definition 2.1. A vector (ρ,u, θ,H) is said to be a global-in-time weak solution to the
full compressible MHD system (1.1a)-(1.1d), if and only if for any positive number T , the
following conditions are satisfied:

•
ρE ∈ L∞([0, T ]; L1(Ω)), ρ|u|2 ∈ L∞([0, T ];L1(Ω)),

∇µ(ρ)√
ρ

∈ L∞([0, T ]; L2(Ω)), (ρβ/2 + ρm/2)∇u ∈ L2([0, T ];L2(Ω)),

(1 +
√

ρ)∇θa/2 ∈ L2([0, T ];L2(Ω)), (1 +
√

ρ)
∇θ

θ
∈ L2([0, T ];L2(Ω)),

for a ≥ 2. Moreover, for large enough s > 0, we have

ρ, ρu, ρE , H ∈ C([0, T ];H−s(Ω)),

and hence, the initial data are satisfied in the sense of distributions (denoted by
D′(Ω× (0, T )).

• The equations (1.1a)-(1.1d) are satisfied in the sense of distributions.

Now our compactness result can be read as follows:

Theorem 2.1. Let Ω be either the three-dimensional periodic domains or the three-dimensional
space R3. Assume that µ, λ, ν, κ are C1[0,∞) functions satisfying the hypotheses (2.1)-
(2.6). Let {(ρn,un, θn,Hn)}∞n=1 be a sequence of weak solutions of (1.1a)-(1.1d) satisfying
the entropy equation (3.9) and the thermal energy equation (4.2) with the initial data

ρn(x, 0) = ρ0,n(x), un(x, 0) = u0,n(x),

θn(x, 0) = θ0,n(x), Hn(x, 0) = H0,n(x),

where ρ0,n, u0,n, θ0,n, H0,n satisfy




ρ0,n ≥ 0, ρ0,n → ρ0 in L1(Ω),
ρ0,n ln ρ0,n → ρ0 ln ρ0 ∈ L1(Ω), ρ0,n ln θ0,n → ρ0 ln θ0 ∈ L1(Ω),
ρ0,n|u0,n|2 → ρ0|u0|2 in L1(Ω),
θ0,n > 0, H0,n → H0 in L2(Ω),
ρ0,ne0,n → ρ0e0 ∈ L1(Ω), ∇µ(ρ0)√

ρ0
→ ∇µ(ρ0)√

ρ0
∈ L2(Ω).

(2.7)
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Assume also that the sequence of the magnetic field {Hn}∞n=1 is uniformly bounded in
L∞(Ω × (0, T )). Then, up to a subsequence, {(ρn,un, θn,Hn)}∞n=1 converges to a global-
in-time weak solution (ρ,u, θ,H) with initial data (ρ0,u0, θ0,H0). More precisely,



{ρn}∞n=1 converges strongly to ρ in C([0, T ];Lp(Ω′)) for all 1 ≤ p < 6m− 3;
{un}∞n=1 converges weakly to u in Lq1([0, T ];W 1,q3(Ω′)) for q1 > 5/3, q3 > 15/8;
{θn}∞n=1 converges strongly to θ in Lp([0, T ];Lq(Ω′)) for all p < a and q < 3a with

1
q = a−p

p(a−1)r + p−1
3p(a−1) , for all r < 3/2;

{Hn}∞n=1 converges weakly to H in L2([0, T ];H1(Ω)) ∩ C([0, T ];L2
weak(Ω)),

where Ω′ is any sufficiently smooth and compact subset of Ω.

3. Energy Estimates and the Entropy Inequality

In this section, we dedicate to the well-known a priori estimates and a new kind of
the entropy equality on weak solutions of the compressible MHD system (1.1a)-(1.1d). To
begin with, from the total energy equation (1.1c), the physical energy inequality holds

E(t) :=
∫

Ω

ρ

(
e +

1
2
|u|2

)
(t, x) +

1
2
|H|2(t, x) dx

≤
∫

Ω

ρ0

(
e0 +

1
2
|u0|2

)
+

1
2
|H0|2 dx := E(0).

(3.1)

As shown in [14, 15], the energy estimate (3.1) alone is not sufficient to build up a
reasonable compactness theory of weak solutions to compressible MHD equations in the
sense of distributions since we can not obtain any a priori estimate on the dissipation about
the viscous stress and the gradient of the magnetic field. Comparing with a priori estimates
for isentropic cases (see [14]), this is a major difference, because in the isentropic case, the
viscous dissipation naturally provides a H1 bound in spatial variables on the velocity u.
To establish the compactness theory in our new framework, the following calculation is
crucial:

Lemma 3.1.
1
2

d

dt

∫

Ω

(
ρ|u|2 + |H|2) dx +

∫

Ω

2µ(ρ)D(u) : D(u) dx

+
∫

Ω

λ(ρ)|divu|2 dx +
∫

Ω

ν|∇ ×H|2 dx =
∫

Ω

p(ρ, θ)divu dx,

(3.2)

and
1
2

d

dt

∫

Ω

(
ρ|u + 2∇ϕ(ρ)|2 + |H|2) dx +

∫

Ω

2µ(ρ)A(u) : A(u) dx +
∫

Ω

ν|∇ ×H|2 dx

=
∫

Ω

p(ρ, θ)divu dx− 2
∫

Ω

∇p(ρ, θ) · ∇ϕ(ρ) dx + 2
∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx,

(3.3)

where A(u) = (∇u−∇u>)/2 denotes the skew symmetric part of ∇u, and ϕ′(x) = µ′(x)/x
for all x > 0. The notation A : B denotes the dot product between two n × n matrices A
and B.

Proof. The energy equality (3.2) is classical, and can be shown by multiplying the mo-
mentum equation (1.1b) by u, the mass conservation equation (1.1a) by |u|2/2, and the
magnetic equation (1.1d) by H, then summing them together. Here we used the following
identity: ∫

Ω

(∇×H)×H · u dx = −
∫

Ω

(∇× (u×H)) ·H dx.
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Now, we turn to show the equality (3.3). The idea is taken from [1], and the argument
goes as follows. From the mass conservation equation, we deduce that

∂tϕ(ρ) + u · ∇ϕ(ρ) + ϕ′(ρ)ρdivu = 0.

This gives, differentiating this equation with respect to the space variable xi, i = 1, 2, 3,
noting x = (x1, x2, x3),

∂t∂iϕ(ρ) + (u · ∇)∂iϕ(ρ) + (∂iu · ∇)ϕ(ρ) + ∂i(ϕ′(ρ)ρdivu) = 0.

Let us multiply this equation by ρ∂iϕ(ρ) and sum over i, by using the mass equation, then
one can deduce

1
2

d

dt

∫

Ω

ρ|∇ϕ(ρ)|2 dx +
∫

Ω

ρ∇ϕ(ρ)⊗∇ϕ(ρ) : ∇u dx +
∫

Ω

∇(ϕ′(ρ)ρdivu) · ∇µ(ρ) dx = 0.

(3.4)
Multiplying the momentum equation by ∇µ(ρ)/ρ, we get

∫

Ω

(∂tu + u · ∇u) · ∇µ(ρ) dx + 2
∫

Ω

µ(ρ)D(u) :
(∇∇µ(ρ)

ρ
− ∇µ(ρ)⊗∇ρ

ρ2

)
dx

+
∫

Ω

∇p(ρ, θ) · ∇ρ

ρ
µ′(ρ) dx + 2

∫

Ω

∇((µ(ρ)− µ′(ρ)ρ)divu) · ∇µ(ρ)
ρ

dx

=
∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx.

(3.5)

Integrating by parts, equation (3.4) can be rewritten under the form

1
2

d

dt

∫

Ω

ρ|∇ϕ(ρ)|2 dx +
∫

Ω

µ(ρ)∇µ(ρ) · ∇u · ∇ρ

ρ2
d−

∫

Ω

µ(ρ)∇u : ∇∇µ(ρ)
ρ

dx

−
∫

Ω

µ(ρ)∇divu · ∇µ(ρ)
ρ

dx +
∫

Ω

∇(ϕ′(ρ)ρdivu) · ∇µ(ρ) dx = 0.

(3.6)

Adding equation (3.5) to equation (3.6) multiplied by 2, we get
∫

Ω

(∂tu + u · ∇u) · ∇µ(ρ) dx− 2
∫

Ω

µ(ρ)∇divu · ∇µ(ρ)
ρ

dx

+
1
2

d

dt

∫

Ω

2ρ|∇ϕ(ρ)|2 dx + 2
∫

Ω

∇((µ(ρ)− µ′(ρ)ρ)divu) · ∇µ(ρ)
ρ

dx

+ 2
∫

Ω

∇(µ′(ρ)divu) · ∇µ(ρ) dx +
∫

Ω

∇p(ρ, θ) · ∇ρ

ρ
µ′(ρ) dx

=
∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx.

(3.7)

By splitting the terms involving divu and by summing them, we get
∫

Ω

(∂tu + u · ∇u) · ∇µ(ρ) dx +
1
2

d

dt

∫

Ω

2ρ|∇ϕ(ρ)|2 dx +
∫

Ω

∇p(ρ, θ) · ∇ρ

ρ
µ′(ρ) dx

=
∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx.

(3.8)

But as for the first term in (3.8), we can calculate
∫

Ω

(∂tu+u ·∇u) ·∇µ(ρ) dx =
d

dt

∫

Ω

u ·∇µ(ρ) dx−
∫

Ω

u ·∇∂tµ(ρ) dx+
∫

Ω

(u ·∇u) ·∇µ(ρ) dx.



COMPACTNESS OF SOLUTIONS TO MAGNETOHYDRODYNAMICS 7

By using now the mass equation and integrating by parts the last two terms, this gives
∫

Ω

(∂tu + u · ∇u) · ∇µ(ρ) dx =
d

dt

∫

Ω

u · ∇µ(ρ) dx−
∫

Ω

µ′(ρ)div(ρu)divu dx

−
∫

Ω

µ(ρ)u · ∇divu dx−
∫

Ω

µ(ρ)∂iuj∂jui dx.

Integrating by parts in the third term, we get
∫

Ω

(∂tu + u · ∇u) · ∇µ(ρ) dx =
d

dt

∫

Ω

u · ∇µ(ρ) dx−
∫

Ω

(ρµ′(ρ)− µ(ρ))|divu|2 dx

−
∫

Ω

µ(ρ)∂iuj∂juidx.

Adding the above identity with (3.8), we get the following equality

d

dt

∫

Ω

u · ∇µ(ρ)dx−
∫

Ω

(ρµ′(ρ)− µ(ρ))|divu|2dx−
∫

Ω

µ(ρ)∂iuj∂juidx

+
1
2

d

dt

∫

Ω

2ρ|∇ϕ(ρ)|2dx +
∫

Ω

∇p(ρ, θ) · ∇ρ

ρ
µ′(ρ)dx

=
∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx.

Adding this last equation multiplied by 2 to the energy estimate (3.2) gives (3.3). ¤

Next, we introduce the concept of the entropy s(ρ, θ) which satisfies the entropy equation
([7, 15, 17, 18]):

∂t(ρs) + div(ρsu) + div
(

κ(θ)
θ

)
=

1
θ
(ν|∇ ×H|2 + Ψ : ∇u)− κ(θ)|∇θ|2

θ2
, (3.9)

with s(ρ, θ) = cυ ln θ − ln ρ, where cυ is a positive constant denoting the specific heat at
constant volume. The entropy equation is useful in compressible flows, because it provides
naturally the estimates in the gradient of the temperature. More precisely, integrating
(3.9) over Ω× (0, t), the following proposition is verified:

Proposition 3.1. Assume that ρ0s0 ∈ L1(Ω). Then, for all t ≥ 0, one has:
∫ t

0

∫

Ω

1
θ
(ν|∇ ×H|2 + Ψ : ∇u) +

κ(ρ, θ)|∇θ|2
θ2

dxdt ≤
∫

Ω

ρs + |ρ0s0|dx. (3.10)

Observing that

ρs ≤ cυρθ − ρ ln ρ.

the first term on the right-hand side of (3.10) can be estimated by
∫

Ω

ρsdx ≤
∫

Ω

cυρθdx−
∫

Ω

ρ ln ρdx.

Multiplying (1.1a) by 1 + ln ρ, we get

∂t(ρ ln ρ) + div(ρu ln ρ) + ρdivu = 0.

Thus, we have ∫

Ω

ρ ln ρdx =
∫

Ω

ρ0 ln ρ0dx +
∫ t

0

∫

Ω

ρdivu dxds.
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Therefore, the right-hand side of (3.10) can be estimated by
∫

Ω

ρs dx ≤
∫

Ω

cυρθ dx +
∫

Ω

|ρ0 ln ρ0| dx +
∫ t

0

∫

Ω

ρ|divu| dxds

≤
∫

Ω

cυρθ dx +
∫

Ω

|ρ0 ln ρ0| dx +
∫ t

0

∫

Ω

√
ρ√

3λ + 2µ

√
3λ + 2µ√

θ
|divu|

√
ρθ dxdt,

(3.11)

and, then using the classical Young’s inequality, the bound of ρθ in L∞([0, T ]; L1(Ω)),
and the assumption (2.2) that ensures that s 7→ s/3λ(s) + 2µ(s) belongs to L∞(R+), we
conclude that the terms on the left-hand side of (3.10) is bounded in L1(Ω× (0, T )).

Hence, if ρ0s0 and ρ0 ln ρ0 belong to L1(Ω), then the components of the following four
quantities

√
3λ + 2µ|divu|/

√
θ,
√

µD(u)/
√

θ,
√

ν∇ × H/
√

θ, (
√

ρ + 1)∇θ
a
2 and (

√
ρ +

1)∇ ln θ are bounded in L2(Ω × (0, T )). We note that the last two bounds involving the
temperature gradient provide the following useful estimates:

(
√

ρ + 1)∇θα ∈ L2(Ω× (0, T )), for all α such that 0 ≤ α ≤ a/2. (3.12)

In order to get enough a priori estimates from Lemma 3.1 and the initial condition
(2.7), we have to control the following terms:

∫

Ω

pdivu dx,

∫

Ω

∇p · ∇ϕ(ρ) dx,

∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx.

To this end, the following estimates are useful:

Lemma 3.2. Let Ω be the three-dimensional periodic box or the whole space R3. For all ρ
satisfying ρ−1/2∇µ(ρ) ∈ L2(Ω), one has

{
‖ρm−1/2χ{ρ>2A}‖L6(Ω) ≤ c‖∇µ(ρ)√

ρ ‖L2(Ω),

‖ρβ−1/2χ{ρ≤A/2}‖L6(Ω) ≤ c‖∇µ(ρ)√
ρ ‖L2(Ω),

for some positive constant c, where A is from (2.2), and χ is the characteristic function.

Proof. Let us consider the function η = αξm−1/2, where ξ : (0,∞) → (0,∞) is a smooth
increasing function such that ξ(s) = s for s > 2A and ξ(s) = 0 for s < A and α is a positive
constant. By hypothesis (2.2), we can choose c such that η′(s) ≤ cµ′(s)/

√
s for all s > 0.

Using Sobolev’s inequality, we have

‖η(ρ)‖L6(Ω) ≤ c‖∇η(ρ)‖L2(Ω) ≤ c

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
L2(Ω)

.

The left-hand side of above inequality is bigger than ‖ρm−1/2χ{ρ>2A}‖L6(Ω). This implies

‖ρm−1/2χ{ρ>2A}‖L6(Ω) ≤ c

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
L2(Ω)

.

To prove the second part, a similar approach can be applied. Indeed, choosing the
function η = αξβ−1/2 such that |η′(s)| ≤ cµ′(s)/

√
s for all s > 0, where ξ : (0,∞) → (0,∞)

is a smooth positive function such that ξ(s) = 0 for s > A and ξ(s) = s for s < A/2. By
Sobolev’s inequality, we have

‖η(ρ)‖L6(Ω) ≤ c‖∇η(ρ)‖L2(Ω) ≤ c

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
L2(Ω)

.

The left-hand side of above inequality is bigger than ‖ρβ−1/2χ{ρ<A/2}‖L6(Ω). This implies

‖ρβ−1/2χ{ρ<A/2}‖L6(Ω) ≤ c

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
L2(Ω)

.
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¤

From Lemma 3.2, we know ρ ∈ L∞([0, T ];L6m−3(Ω′)) for any bounded subset Ω′ of Ω.

Lemma 3.3 (The control of
∫
Ω

p divu dx).
∫

Ω

p divu dx ≤ − d

dt

∫

Ω

ρPe(ρ) dx + ε‖
√

3λ + 2µdivu‖2L2

+ cε

(
‖ρθ‖2L1 + ‖θ‖2L6 + ‖θ‖2L3

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
2

L2

)
,

for all positive ε.

Proof. By the continuity equation in the renormalized sense, we have∫

Ω

p divu dx =
∫

Ω

pe(ρ)divu dx +
∫

Ω

ρθdivu dx

= − d

dt

∫

Ω

ρPe(ρ) dx +
∫

Ω

ρθdivu dx.

(3.13)

For the second term on the right-hand side of (3.13), we can estimate∣∣∣∣
∫

Ω

ρθdivu dx

∣∣∣∣ ≤ ‖
√

3λ + 2µdivu‖L2

× (‖ρθχ{ρ<A}/
√

3λ + 2µ‖L2 + ‖ρθχ{ρ≥A}/
√

3λ + 2µ‖L2)

≤ c‖
√

3λ + 2µdivu‖L2

× (‖ρ2/5θ‖L2‖ρ(6−5β)/10χ{ρ<A}‖L∞ + A−m/2‖ρχ{ρ≥A}‖L6‖θ‖L3)

≤ c‖
√

3λ + 2µdivu‖L2

× (‖ρθ‖2/5
L1 ‖θ‖3/5

L6 A(6−5β)/10 + A(3−3m)/2‖ρχ{ρ≥A}‖m−1/2
L6m−3 ‖θ‖L3).

Thus, in view of Lemma 3.2 and Young’s inequality, we have∣∣∣∣
∫

Ω

ρθdivu dx

∣∣∣∣ ≤ c‖
√

3λ + 2µdivu‖L2

×
(
‖ρθ‖L1 + ‖θ‖L6 + ‖θ‖L3

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
L2

)

≤ ε‖
√

3λ + 2µdivu‖2L2

+ cε

(
‖ρθ‖2L1 + ‖θ‖2L6 + ‖θ‖2L3

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
2

L2

)
.

¤

By(3.12) and Sobolev’s inequality, θ ∈ L2([0, T ];L6(Ω))∩L2([0, T ];L3(Ω)), since a ≥ 2.
Also, in view of the total energy conservation inequality (3.1) and our assumptions, we
know that ρPe(ρ) ∈ L∞([0, T ];L1(Ω)) and ρθ ∈ L∞([0, T ]; L1(Ω)). Thus, it is possible, by
taking ε small enough, to get some a priori estimates from (3.2) and (3.3) via Gronwall’s
inequality.

Lemma 3.4 (The control of
∫
Ω
∇p · ∇ϕ(ρ) dx).

−
∫

Ω

∇p · ∇ϕ(ρ) dx ≤ −
∫

Ω

ϕ′(ρ)θ|∇ρ|2 dx +
∫

Ω

(
cεκ(ρ, θ)

|∇θ|2
θ2

+ ε
|∇µ(ρ)|2

ρ

)
dx

−
∫

Ω

|∇ρ−
l+1−β

2 |2χ{ρ<A1} dx,
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with A1 = min{A,A0}.
Proof. By our assumption (2.4), we have

∇p = θ∇ρ + ρ∇θ + p′e(ρ)∇ρ.

Hence, we have

−
∫

Ω

∇p · ∇ϕ(ρ) dx = −
∫

Ω

ϕ′(ρ)θ|∇ρ|2 dx−
∫

Ω

ϕ′(ρ)ρ∇θ · ∇ρ dx

−
∫

Ω

p′e(ρ)ϕ′(ρ)|∇ρ|2 dx

≤ −
∫

Ω

ϕ′(ρ)θ|∇ρ|2 dx−
∫

Ω

ϕ′(ρ)ρ∇θ · ∇ρ dx

− c

∫

Ω

|∇ρ−
l+1−β

2 |2χ{ρ<A1} dx.

(3.14)

because ϕ′(ρ) > 0 and p′e(ρ) ≥ 0.
As for the second term on the right-hand side of (3.14), we have, by our assumption

(2.3),
∣∣∣∣
∫

Ω

ϕ′(ρ)ρ∇θ · ∇ρ dx

∣∣∣∣ ≤
∫

Ω

|ϕ′(ρ)ρ∇θ · ∇ρ| dx

≤
∫

Ω

(
cεκ(ρ, θ)

|∇θ|2
θ2

+ ε
ρθ2

κ(ρ, θ)
|∇µ(ρ)|2

ρ

)
dx

≤
∫

Ω

(
cεκ(ρ, θ)

|∇θ|2
θ2

+ ε
|∇µ(ρ)|2

ρ

)
dx.

Thus, we have

−
∫

Ω

∇p · ∇ϕ(ρ) dx ≤−
∫

Ω

ϕ′(ρ)θ|∇ρ|2 dx +
∫

Ω

(
cεκ(ρ, θ)

|∇θ|2
θ2

+ ε
|∇µ(ρ)|2

ρ

)
dx

−
∫

Ω

|∇ρ−
l+1−β

2 |2χ{ρ<A1} dx.

¤

Noting that Proposition 3.1 implies κ(ρ, θ) |∇θ|2
θ2 ∈ L1(Ω × (0, T )). Therefore, it is also

possible, by incorporating the estimate into (3.2) and (3.3), to get some a priori estimates
via Gronwall’s inequality.

Lemma 3.5 (The control of
∫
Ω
(∇×H)×H · ∇µ(ρ)

ρ dx).
∣∣∣∣
∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx

∣∣∣∣ ≤ c

∫

Ω

( |∇ ×H|2ν(ρ, θ,H)
θ

+
|∇µ(ρ)|2

ρ

)
dx.

Proof. Indeed, we can estimate, by our assumption (2.6) and the uniform bound of Hn in
L∞(Ω× (0, T )),

∣∣∣∣
∫

Ω

(∇×H)×H · ∇µ(ρ)
ρ

dx

∣∣∣∣ ≤
∫

Ω

|(∇×H)×H · ∇µ(ρ)
ρ

| dx

≤ c

∫

Ω

( |∇ ×H|2|H|2
ρ

+
|∇µ(ρ)|2

ρ

)
dx

≤ c

∫

Ω

( |∇ ×H|2ν(ρ, θ)
θ

+
|∇µ(ρ)|2

ρ

)
dx.

¤
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The entropy inequality (3.10) implies that |∇×H|2ν(ρ,θ)
θ belongs to L1(Ω× (0, T )), pro-

vided ρ0s0 and ρ0 ln ρ0 belong to L1(Ω). Therefore, from Lemma 3.1-3.5, we can deduce
the following a priori estimates via Gronwall’s inequality:





‖√ρu‖L∞([0,T ];L2(Ω)) ≤ c, ‖ρ−1/2∇µ(ρ)‖L∞([0,T ];L2(Ω)) ≤ c,

‖(ρm/2 + ρβ/2)∇u‖L2(Ω×(0,T )) ≤ c, ‖ρm/2+ρβ/2

θ1/2 ∇u‖L2(Ω×(0,T )) ≤ c,

‖(θ)1/2(ρ(β−1)/2 + ρ(m−1)/2)∇ρ
ρ ‖L2(Ω×(0,T )) ≤ c, ‖ρPe(ρ)‖L∞([0,T ];L1(Ω)) ≤ c,

‖
√

ρθ
µ′(ρ)∇ϕ(ρ)‖L2(Ω×(0,T )) ≤ c, ‖ρθ‖L∞([0,T ];L1(Ω)) ≤ c,

‖H‖L∞([0,T ];L2(Ω)) ≤ c, ‖√ν∇×H‖L2(Ω×(0,T )) ≤ c,

‖√1 + ρ∇θα‖L2(Ω×(0,T )) ≤ c, ‖∇ρ−
l+1−β

2 χ{ρ<A1}‖L2(Ω×(0,T )) ≤ c,

(3.15)
for all α ∈ [0, a/2].

4. Some Integrability Lemmas

As mentioned in [15, 20], the lack of a priori estimates on approximation solutions to
the compressible flow is the main difficulty to prove the existence and the compactness of
global-in-time weak solutions. Indeed, the basic and natural a priori estimates are not
sufficient, since the energy equation does not hold so far even in the distribution theory
framework. For more details, we refer the readers to [15].

This difficulty has been circumvented in [10, 15] by restricting the generality of the
equations of state (2.3) and (2.4), and defining variational solutions for which the energy
equation (1.1c) becomes two inequalities in the sense of distributions. However, this ap-
proach requires significant restrictions on the equations of state, in particular the ideal gas
case is excluded.

This section is devoted to the local integrability analysis of the various energy fluxes such
as ρu|u|2, ρue, up, κ∇θ. One of the crucial steps is the additional integrability obtained
on ρ.

4.1. Integrability of the velocity. Let us begin with some bounds on the velocity with
density dependent weights.

Lemma 4.1. Let Ω be either the whole space R3 or the three-dimensional periodic box,
and T > 0. Let u be a vector field over Ω × (0, T ) such that u ∈ Lq1([0, T ]; Lq2

loc(Ω)),√
ρu ∈ L∞([0, T ];L2(Ω)), and ρ ∈ L∞([0, T ]; Lp

loc(Ω)) such that

q1 ∈ (1, 2), and
1
p

+
2q1

q2(q1 − 1)
< 1.

Then, there exists δ > 3 such that ρ1/3u ∈ Lδ(Ω′ × (0, T )) for all bounded subsets Ω′ in Ω.

Proof. For the proof we refer the reader to Lemma 6.1 in [1]. ¤

In order to apply Lemma 4.1 to improve the integrability of ρ1/3u, we need first to
deduce the integrability of the velocity u. Indeed, following the computation in [1], one
may write ∇u = ρ−β/2ρβ/2∇u, and then deduce that

‖∇u‖Lq1 ([0,T ];Lq3 (Ω′))

≤ C(Ω′)
(
1 + ‖ρ−β/2χ{ρ<A1}‖L2j([0,T ];L6j(Ω′))

)
‖ρβ/2∇u‖L2(Ω×(0,T ))

≤ C(Ω′)
(
1 + ‖∇ρ−(l+1−β)/2χ{ρ<A1}‖L2([0,T ];L2(Ω′))

)
‖ρβ/2∇u‖L2(Ω×(0,T )),

(4.1)

with

j =
l + 1− β

β
, q1 = 2

(
1− β

l + 1

)
, and

1
q3

=
1
6j

+
1
2
.
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In Lemma 4.1, letting q2 = 3q3
3−q3

= 3q1, taking p = 6m − 3, we deduce that ρ1/3u ∈
Lδ((0, T )× Ω′) for some δ > 3.

As a byproduct of previous analysis, we also can derive useful bounds on energy flux.
More precisely, one has for all bounded subset Ω′ of Ω,

‖ρ−lu‖Ls([0,T ];Lr(Ω′)) ≤ C‖ρ−l‖2/3
L∞([0,T ];L1(Ω′))‖ρ−l‖1/3

L2j1 ([0,T ];L6j1 (Ω′))‖u‖Lq1 ([0,T ];Lq2 (Ω′)),

with

j1 =
l + 1− β

2l
,

1
s

=
5l + 3

6(l + 1− β)
,

1
r

=
17l + 15− 12β

18(l + 1− β)
.

Noting that the hypothesis (2.5) implies that s > 1 and r > 1.
In order to bound the energy fluxes, it remains to control ρku in Lδ((0, T )×Ω′) for some

δ > 1. Since u is bounded in Lq1([0, T ];Lq2
loc(Ω)) and ρ is bounded in L∞([0, T ];L(6m−3)/k

loc (Ω)),
the hypothesis (2.5) implies that ρku is bounded in Lδ((0, T )× Ω′) for some δ > 1.

4.2. Integrability of the heat flux. In this subsection, we will need the following inte-
grability on the temperature:

Lemma 4.2. Let Ω be either the whole space R3 or a three-dimensional periodic box and
let T > 0. Let θ be a function over Ω× (0, T ) such that (

√
ρ + 1)∇θa/2 and (

√
ρ + 1)∇ ln θ

belong to L2(Ω × (0, T )) with a ≥ 2, ρe ∈ L∞([0, T ]; L1(Ω)), and ρ−1/2∇µ(ρ) ∈ L2(Ω).
Then, θ

a−c+1
2 belongs to L2([0, T ];L6(Ω)) for all 0 < c ≤ 1.

Proof. For the proof, we refer the reader to Lemma 7.3 in [1]. ¤

At this stage, in order to improve the integrability of the heat flux, we need to use the
following thermal energy equation (cf. equation (1.15) in [15]).

∂t(ρθ) + div(ρθu)− div(κ(ρ, θ)∇θ) = ν|∇ ×H|2 + Ψ : ∇u− θρdivu. (4.2)

As a matter of fact, we have

Lemma 4.3. For any nondecreasing concave function from R+ to R, one has
∫

Ω

f ′(θ)(2µD(u) : D(u) + λ|divu|2 + ν|∇ ×H|2) dx−
∫

Ω

κ(ρ, θ)f ′′(θ)|∇θ|2 dx

≤ d

dt

∫

Ω

ρf(θ) dx +
∫

Ω

ρθf ′(θ)|divu| dx.

Proof. Multiplying (4.2) by f ′(θ), one has
∫

Ω

f ′(θ)(2µD(u) : D(u) + λ|divu|2 + ν|∇ ×H|2) dx−
∫

Ω

κ(ρ, θ)f ′′(θ)|∇θ|2 dx

=
∫

Ω

f ′(θ)(θρdivu + ∂t(ρθ) + div(ρθu)) dx

=
∫

Ω

f ′(θ)(θρdivu + ρ∂tθ + ρu∇θ) dx

=
∫

Ω

f ′(θ)θρdivu + ρ∂tf(θ) + ρu∇f(θ) dx

=
∫

Ω

f ′(θ)θρdivu + ∂t(ρf(θ)) + div(ρuf(θ)) dx

≤
∫

Ω

f ′(θ)θρ|divu| dx +
d

dt

∫

Ω

ρf(θ) dx,

here, we used twice the mass conservation equation (1.1a). ¤
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Now, we consider f ′(θ) = 1
θc for some 0 < c < 1 in Lemma 4.3, then we have

∫

Ω

1
θc

(2µD(u) : D(u) + λ|divu|2 + ν|∇ ×H|2) dx + c

∫

Ω

κ(ρ, θ)
1

θc+1
|∇θ|2 dx

≤ d

dt

∫

Ω

ρ
θ1−c

(1− c)
dx +

∫

Ω

ρθ1−c|divu| dx.

Keeping the hypothesis (2.3) in mind, we have
∫

Ω

(1 + ρ)|∇(1 + θ)(a−c+1)/2|2 dx ≤ d

dt

∫

Ω

ρ
θ1−c

(1− c)
dx +

∫

Ω

ρθ1−c|divu| dx. (4.3)

For the second term on the right-hand side of (4.3), one has
∣∣∣∣
∫

Ω

ρθ1−cdivu dx

∣∣∣∣
≤ ‖

√
3λ + 2µdivu‖L2

× (‖ρθ1−cχ{ρ<A}/
√

3λ + 2µ‖L2 + ‖ρθ1−cχ{ρ≥A}/
√

3λ + 2µ‖L2)

≤ c‖
√

3λ + 2µdivu‖L2

× (‖ρ2/5θ1−c‖L2‖ρ(6−5β)/10χ{ρ<A}‖L∞ + A−m/2‖ρχ{ρ≥A}‖L6‖θ1−c‖L3)

≤ c‖
√

3λ + 2µdivu‖L2

× (‖ρθ1−c‖2/5
L1 ‖θ1−c‖3/5

L6 A(6−5β)/10 + A(3−3m)/2‖ρχ{ρ≥A}‖m−1/2
L6m−3 ‖θ1−c‖L3).

Thus, in view of Lemma 3.2 and Young’s inequality, we have
∣∣∣∣
∫

Ω

ρθ1−cdivu dx

∣∣∣∣

≤ c‖
√

3λ + 2µdivu‖L2

(
‖ρθ1−c‖L1 + ‖θ1−c‖L6 + ‖θ1−c‖L3

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
L2

)

≤ ε‖
√

3λ + 2µdivu‖2L2 + cε

(
‖ρθ1−c‖2L1 + ‖θ1−c‖2L6 + ‖θ1−c‖2L3

∥∥∥∥
∇µ(ρ)√

ρ

∥∥∥∥
2

L2(Ω)

)
.

Because ρθ and ρ belong to L∞([0, T ];L1(Ω)), we deduce that ρθ1−c = ρc(ρθ)1−c belongs
to L∞([0, T ]; L1(Ω)). Hence, integrating over t in the both sides of (4.3), and combining
the estimates in Proposition 3.1, one has, if 0 < c ≤ 1,

∫ T

0

∫

Ω

(1 + ρ)|∇(1 + θ)(a−c+1)/2|2 dxdt ≤ C, (4.4)

for some positive constant C. In particular, by Sobolev’s inequality, θa−c+1 belongs to
L2([0, T ];L3(Ω)).

Lemma 4.4. Let Ω be either the whole space R3 or the three-dimensional periodic box and
let T > 0. Assume that θ satisfies the conditions in Lemma 4.2 and

√
1 + ρ∇θ(a−c+1)/2 ∈

L2([0, T ];L2(Ω)), θa−c+1 ∈ L2([0, T ];L3(Ω)), ρ ∈ L∞([0, T ];L6m−3(Ω)). Then, one has,
for some p > 1,

κ(ρ, θ)∇θ ∈ Lp([0, T ]; Lp(Ω)). (4.5)

Proof. For the proof, we refer the reader to Lemma 6.2 in [1]. ¤
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5. Compactness of Weak Solutions

With the a priori estimates and integrability lemmas obtained in the previous sections,
we now study the compactness of sequences of weak solutions {(ρn,un, θn,Hn)}∞n=1 and
pass to the limit in nonlinear terms.

To begin with, we will state the Aubin-Lions compactness lemma (see[19], Ch. IV, and
[23] for more recent references) which we will use later. A simple statement goes as follows:

Lemma 5.1 (Aubin-Lions Lemma). Let T > 0, p ∈ (1,∞) and let {fn}∞n=1 be a
bounded sequence of functions in Lp([0, T ];H) where H is a Banach space. If {fn}∞n=1 is
also bounded in Lp([0, T ];V ), where V is compactly imbedded in H and {∂fn/∂t}∞n=1 is
bounded in Lp([0, T ];Y ) uniformly where H ⊂ Y , then {fn}∞n=1 is relatively compact in
Lp([0, T ];H).

5.1. Compactness of the density. From the uniform estimates derived in Lemma 3.2,
we deduce that the sequence ρn is uniformly bounded in L∞([0, T ]; L6m−3(Ω′)) for all
bounded subset Ω′ of Ω. Up to a subsequence, one may assume that ρn converges weakly
to some ρ in L2([0, T ]; L2

loc(Ω)). In fact, we have

Lemma 5.2.

∂t(ρm
n ) is bounded in L2([0, T ];L3/2(Ω′)),

∇ρm
n is bounded in L∞([0, T ];L3/2(Ω′));

as a consequence, up to a subsequence, ρn converges almost everywhere and strongly to
some element ρ in C([0, T ];Lp(Ω′)) for all 1 ≤ p < 6m − 3. Moreover, the continuity
equation (1.1a) hold in the sense of distributions.

Proof. Let us consider the renormalized mass equation satisfied by h(ρ) = ρm,

∂t(h(ρn)) + div(h(ρn)un) + (m− 1)ρm
n divun = 0.

The uniform bounds of
√

ρnun in L∞([0, T ];L2(Ω)) and of ρ
−1/2
n h(ρn) in L∞([0, T ]; L6(Ω′))

imply that h(ρn)un is bounded in L∞([0, T ]; L3/2(Ω′)). On the other hand, ρm/2divun is
bounded in L2(Ω×(0, T )), and the sequence ρm/2 is bounded in L∞([0, T ];L6(2m−1)/m(Ω′)),
hence, ρm

n divun is bounded in L2([0, T ];L3/2(Ω′)). Thus, ∂t(h(ρn)) is uniformly bounded
in L2([0, T ]; L3/2(Ω′)).

The spatial regularity of ρm
n can be estimated as follows. Since ∇(ρm

n ) = ∇ρm
n√

ρn

√
ρn, thus,

∇(ρm
n ) is bounded in L∞([0, T ];L3/2(Ω′)). The estimates deduced above, and thanks to

Aubin-Lions Lemma, give the strong convergence of ρm
n in L2([0, T ];L2(Ω′)). We denote

the limit of ρm
n by ρm. Then, since the function h(s) is strictly increasing, we conclude that

ρn converges strongly to ρ := (ρm)1/m in L2([0, T ];L2(Ω′)), and hence, by interpolation,
in Lq([0, T ];Lp(Ω′)) for all 1 ≤ p < 6m − 3 with 1

p = 1
q + q−1

(6m−3)q . And using the
continuity equation (1.1a) again, we know actually ρn converges strongly to ρ := (ρm)1/m

in C([0, T ];Lp(Ω′)) for all 1 ≤ p < 6m− 3.
Finally, we already know that {un}∞n=1 is uniformly bounded in Lq1([0, T ]; W 1,q3(Ω′)).

Thus, up to a subsequence, un converges weakly to some element u in Lq1([0, T ]; W 1,q3(Ω′)).
By Sobolev’s compact imbedding theorem, we also have that un is uniformly bounded in
L5/3([0, T ];L5(Ω′)) since q1 > 5/3 and q3 > 15/8. As a consequence, we pass to the limit
in the mass conservation equation:

∂tρ + div(ρu) = 0, in D′(Ω× (0, T )). (5.1)

¤
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In the spirit of Lemma 5.2, we can pass to the limit in the sense of distributions for the
terms ρnPe(ρn), pe(ρn), ρnPe(ρn)un, pe(ρn)un since un converges weakly to some element
u in Lq1([0, T ];W 1,q3(Ω′)).

5.2. Compactness of the momentum. In this subsection, we show the compactness
of the momentum ρnun by Aubin-Lions Lemma. We already know from the previous
subsection that ρnun converges weakly to ρu in L2([0, T ]; L3/2(Ω′)), due to the facts√

ρnun ∈ L∞([0, T ]; L2(Ω)) and ρn ∈ L∞([0, T ];L3(Ω′)). To this end, we need to es-
tablish the uniform bound of ∂t(ρnun) in some suitable functional space. Indeed, we can
show that the sequence ∂t(ρnun) is uniformly bounded in Lp([0, T ];H−s(Ω)) for some p > 1
and s large enough.

From the momentum conservation equation (1.1b), we have

∂t(ρnun) = −div (ρnun ⊗ un)−∇pn + (∇×Hn)×Hn + divΨn.

For the first term on the right-hand side, ρnun ⊗ un is bounded in L3/2([0, T ]; L9/7(Ω′))
uniformly as a product of ρ

1/3
n un, bounded in L3([0, T ];L3(Ω′)) and ρn, bounded in

L∞([0, T ];L6m−3(Ω′)). For the second term, pn = p(ρn, θn) is bounded uniformly in
L∞([0, T ];L1(Ω)), since ρnθn is uniformly bounded in L∞([0, T ]; L1(Ω)) and pe(ρn) is
bounded in L∞([0, T ];L1(Ω)). For the third term, by (3.15), (∇×Hn) ×Hn is bounded
in L2([0, T ]; L3/2(Ω)). As for the fourth term divΨn, from the fact

√
µ(ρn)D(un) and√

|λ(ρn)|divun are bounded in L2(Ω×(0, T )), and that
√

µ(ρn) and
√
|λ(ρn)| are uniformly

bounded in L∞([0, T ];L6(Ω′)), we deduce that divΨn is bounded in L2([0, T ];L3/2(Ω′)).
Therefore, the sequence ∂t(ρnun) is uniformly bounded in L3/2([0, T ];W−1,1(Ω′)).

Next, we have

∂i(ρnunj) = ρn∂iunj + unj∂iρn

=
ρn

ρ
m/2
n + ρ

β/2
n

(ρm/2
n + ρβ/2

n )∂iunj +
1

µ′(ρn)
√

ρnunjρ
−1/2
n ∂iµ(ρn).

(5.2)

Using the hypothesis (2.2) and the estimate ρn ∈ L∞([0, T ];L6m−3(Ω′)), one can deduce
that ρn

ρ
m/2
n +ρ

β/2
n

∈ L∞([0, T ];L3(Ω′)) and 1
µ′(ρn) ∈ L∞(Ω×(0, T )). Hence, from the estimates

in (3.15), we deduce that ρnun ∈ L2([0, T ];W 1,1(Ω′)). Thus, by Aubin-Lions Lemma, we
deduce that ρnun converges strongly to ρu in L3/2([0, T ]; Lp(Ω′)) for all 1 ≤ p < 3/2.

As a conclusion, the product ρn|un|2, converges strongly to ρ|u|2 in L1(Ω×(0, T )), since
ρnun converges weakly to ρu in L∞([0, T ];L3/2(Ω′)), strongly to ρu in L3/2([0, T ];Lp(Ω′))
for all 1 ≤ p < 3/2 and un is bounded uniformly in L5/3([0, T ];L5(Ω′)). Using the fact
ρ
1/3
n un = ρ

1/3
n unχ{ρn≤ε} + ρ

1/2
n unρ

−1/6
n χ{ρn>ε}, ρ

1/3
n un is the sum of a uniformly small

term in L1(Ω′ × (0, T )) and another term converging to ρ1/3uχ{ρ>ε} and then we deduce
that ρ

1/3
n un converges strongly in L1([0, T ];L1(Ω′)) to ρ1/3u. Finally, by the interpolation

and the uniform bound of ρ
1/3
n un in Lδ(Ω′ × (0, T )) for some δ > 3, we conclude that

ρ
1/3
n un converges strongly in L3(Ω′ × (0, T )) to ρ1/3u.

5.3. Compactness of the temperature. In this subsection, we want to derive compact-
ness results for the energy En and the temperature θn. The first step is to derive uniform
bounds in Lp([0, T ];H−s(Ω)) for some p > 1 and s large enough for the sequence ∂t(En).
Indeed, we can rewrite the energy conservation equation (1.1c):

∂t(En) = −div(un(E ′n + pn))+div((un×Hn)×Hn + νnHn× (∇×Hn)+unΨn +κn∇θn).

For the first term of the right-hand side, we already know that ρnun|un|2 is uniformly
bounded in Lq([0, T ]; Lq(Ω′)) for some q > 1. Also, we already get the uniform bounds in
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Lq([0, T ];Lq(Ω′)) with some q > 1 for the terms ρ−l
n un, ρk

nun and κ(ρn, θn)∇θn in Section
4. Next, the uniform bound of ρnun in L∞([0, T ];L3/2(Ω′)) and the uniform bound of θn

in L2([0, T ]; L6(Ω)) implies that ρnunθn is bounded in Lq([0, T ];Lq(Ω′)) for some q > 1.
Hence, ρnunen and pnun are bounded in Lq([0, T ];Lq(Ω′)) for some q > 1.

For the viscous flux unΨn, we note the facts that
√

µ(ρn)D(un) and
√
|λ(ρn)|divun are bounded in L2(Ω× (0, T )),

and
√

µ(ρn)ρ−1/3
n and

√
|λ(ρn)|ρ−1/3

n are bounded in L∞([0, T ];L18(2m−1)/(3m−2)(Ω′))

due to the hypothesis (2.2) and Lemma 3.2, hence in L∞([0, T ];L9(Ω′)), and ρ
1/3
n un is

bounded in L3(Ω×(0, T )). Thus, the viscous fluxes are bounded in L6/5([0, T ];L18/17(Ω′)).
As for the terms related to the magnetic field, we have the fact Hn is bounded in

L∞([0, T ];L2(Ω)) ∩ L2([0, T ],H1(Ω)), hence, by interpolation, in Lp([0, T ];Lq(Ω)) where
p > 5, q < 30/11, and

1
q

=
1
2
− 2

3p
.

Thus, (un ×Hn)×Hn belongs to Lq([0, T ]; Lq(Ω′)) for some q > 1, since un is uniformly
bounded in L5/3([0, T ];L5(Ω′)). By the bound of the magnetic field coefficient ν(ρ, θ), we
know νnHn×(∇×Hn) belongs to L2p/(2+p)([0, T ]; L2q/(2+q)(Ω′)) for p > 5, 2 < q < 30/11,
hence, in Lq([0, T ];Lq(Ω′)) for some q > 1.

With the bound of ∂t(En) in mind, we can show the strong convergence of the term ρnθ2
n.

To this end, we will follow the argument in [1]. First, we note that the strong convergence
of
√

ρnun to
√

ρu in Lr([0, T ];L2(Ω′)) and the strong convergence of ρnPe(ρn) to ρPe(ρ)
in Lr([0, T ];L1(Ω′)) for all r ∈ (1,∞). Let us introduce

K = {f ∈ L
|
loc(Ω)|‖∇f‖L2(Ω) = 1}

and a sequence Tk of regularizing kernels given for instance by convolution operators such
that the following basic properties hold:

sup
f∈K

‖f − Tkf‖ ≤ C

k
,

and for all compact subset Ω′ ⊂ Ω, there exists Ck,Ω′ such that for all f ∈ K,

‖Tkf‖L∞(Ω′) ≤ Ck,Ω′ and Tkf ∈ Hs(Ω) for all s > 0.

Then, we can deduce that for any compact subset Ω′ ⊂ Ω, one has
∣∣∣∣∣
∫

Ω′×(0,T )

(ρnθ2
n − ρθ2) dx dt

∣∣∣∣∣ ≤
C

k
(‖ρnθn‖L2(Ω′×(0,T )) + ‖ρθ‖L2(Ω′×(0,T )))

+

∣∣∣∣∣
∫

Ω′×(0,T )

ρθ(θn − θ) dx dt

∣∣∣∣∣

+
1
2
‖(|Hn|2 − |H|2)Tkθn‖L1(Ω′×(0,T ))

+
1
2
‖(ρn|un|2 − ρ|u|2)Tkθn‖L1(Ω′×(0,T ))

+ ‖(ρnPe(ρn)− ρPe(ρ))Tkθn‖L1(Ω′×(0,T ))

+

∣∣∣∣∣
∫

Ω′×(0,T )

(En − E)Tkθn dx t

∣∣∣∣∣ .

(5.3)
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Let us observe that the first term of the above right-hand side is bounded by
C

k
(‖ρn‖L∞([0,T ];L3(Ω′))‖θn‖L2([0,T ];L6(Ω′)) + ‖ρ‖L∞([0,T ];L3(Ω′))‖θ‖L2([0,T ];L6(Ω′))).

Therefore, given ε > 0, there exists an integer k0 such that the preceding term is less
than ε/4 uniformly in n. Dealing with the second term is an easy task since θn converges
weakly to θ in L2([0, T ];L6(Ω′)), so that for n large enough, the second term is estimated
by ε/4. But ‖Tk0θn‖L∞(Ω′) is uniformly bounded in n, whereas H2

n, ρn|un|2 and ρnPe(ρn)
converges strongly respectively to H2, ρ|u|2 and ρPe(ρ) in L1(Ω′ × (0, T )) respectively, so
that the sum of the third and the fourth term is estimated by ε/4 for large enough n. For
the last term with k = k0, the uniform bound of ∂t(En) in Lp([0, T ]; H−s(Ω)) where p > 1
implies that up to a subsequence, En converges strongly to E in C([0, T ];H−s(Ω)), so that,
for large enough n, the right-hand side of above inequality is less than ε. It follows that√

ρnθn converges strongly in L2(Ω× (0, T )).
On the other hand, we know the strong convergence of ρ

−1/2
n to ρ−1/2 in L2([0, T ]; Lp(Ω′))

for p < 6 due to the Lebesgue’s dominated convergence theorem, the estimate (3.15)
and the strong convergence of the density. And then, we deduce that θn converges
to θ in L1([0, T ];Lr

loc(Ω
′)) for all r < 3/2. Recalling the uniform bound of θ

a/2
n in

L2([0, T ];L6(Ω′)), we deduce that θn converges strongly to θ in Lp([0, T ]; Lq(Ω′)) for all
p < a, and q < 3a with

1
q

=
a− p

p(a− 1)r
+

p− 1
3p(a− 1)

,

for all r < 3/2.

5.4. Compactness of the magnetic field. The aim of this subsection is to show the
compactness of the magnetic field. From Lemma 3.1, and the hypothesis (2.6), we deduce
that Hn ∈ L2([0, T ];H1(Ω)) ∩L∞([0, T ];L2(Ω)). Thus, we can assume that Hn converges
weakly to some element H with divH = 0 in L2([0, T ];H1(Ω)) ∩ L∞([0, T ];L2(Ω)).

On the other hand, from the equation (1.1d), we know that

∂tHn = ∇× (un ×Hn)−∇× (ν(ρn, θn)∇×Hn). (5.4)

For the first term on the right-hand side of (5.4), we deduce that

un ×Hn ∈ L5/3([0, T ]; L10/7(Ω′))

because of un ∈ L5/3([0, T ];L5(Ω′)) and Hn ∈ L∞([0, T ]; L2(Ω)). For the second term
on the right-hand side of (5.4), we have ν(ρn, θn)∇ × Hn ∈ L2(Ω × (0, T )) due to the
hypothesis (2.6). Hence, ∂tHn is bounded in L5/3([0, T ];W−1,10/7(Ω′)). By Aubin-Lions
Lemma, we deduce that Hn converges strongly to H in L5/3([0, T ];Lp(Ω′)) for any 5 <
p < 6. Furthermore, due to the uniform bound of Hn in L∞([0, T ]; L2(Ω)), by using the
interpolation, one obtain that Hn converges strongly to H in Lp([0, T ];Lq(Ω′)) for some
p > 5 and some q > 5/2.

5.5. Proof of Theorem 2.1. To finish the proof of Theorem 2.1, we need to check that
the limit functions ρ, u, θ, H are indeed the weak solutions, as defined in the introduction.
We will complete this proof by several steps.

Step 1: Convergence of the mass conservation equation. Let us start with the mass
conservation equation (1.1a), since ρn converges strongly to ρ in C([0, T ];Lp(Ω′)) for all 1 ≤
p < 6m− 3, and un converges weakly to u in Lq1([0, T ];W 1,q3(Ω)), we deduce that, by the
Sobolev’s compact imbedding theorem, ρnun converges strongly to ρu in Lr([0, T ]; L1(Ω′))
for some r > 1. In particular, the mass conservation equation (1.1a) is satisfied in the
sense of distributions.

Step 2: Convergence of the momentum conservation equation. For the momen-
tum conservation equation (1.1b), the strong convergence of ρnun and ρnun ⊗ un in
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L1([0, T ];L1(Ω′)) can ensure the passing to limit in the sense of distribution for the two
corresponding term in the momentum conservation equation (1.1b). On the other hand,
since Hn converges weakly* to H in L∞([0, T ];L2(Ω))∩L2([0, T ];H1(Ω)), this implies that
the nonlinear term (∇×Hn)×Hn converges to (∇×H)×H in the sense of distributions.
As a product of ρn and θn, which respectively converge strongly in C([0, T ];L2(Ω′)) and in
L2(Ω×(0, T )), the term ∇(ρnθn) converges to the limit ∇(ρθ) in the sense of distributions.
The term pe(ρ) is already done in view of the hypothesis (2.5) and the strong convergence
of ρ in C([0, T ]; Lp(Ω′)) for all 1 ≤ p < 6m− 3. Thus, we are left to show the convergence
of the viscous flux. In fact,

µ(ρn)D(un) = D(µ(ρn)un)− 1
2

(√
ρnun ⊗ ∇µ(ρn)√

ρn
+
∇µ(ρn)√

ρn
⊗√ρnun

)
. (5.5)

Since µ(ρn)√
ρn

converges strongly to µ(ρ)√
ρ in L∞([0, T ]; L2(Ω′)) and

√
ρnun converges strongly

to
√

ρu in L2([0, T ];L2(Ω′)), the fist term on the right-hand side of (5.5) converges to the
corresponding term in the sense of distributions. The convergence of the second term on
the right-hand side of (5.5) in the sense of distributions can be shown by using the weak
convergence of ρ

−1/2
n ∇µ(ρn) to ρ−1/2∇µ(ρ) in L2([0, T ];L2(Ω′)) and the strong convergence√

ρnun in L2([0, T ];L2(Ω′)). For the bulk viscous term λ(ρn)divun, by the assumption
(2.1), it may be written in the renormalized sense:

λ(ρn)divun = −2(∂tµ(ρn) + div(µ(ρn)un)),

which can be shown directly by the convergence of ρn and un, and hence, the convergence
in the sense of distributions for the momentum conservation equation is done.

Step 3: Convergence of the energy conservation equation. The main difficulties in this
step lie in the passage to the limit for the energy flux u(E ′ + p), the heat flux κ∇θ, the
viscous term uΨ, and the nonlinear terms (u×H)×H, νH× (∇×H), because we already
showed that En converges strongly to E in C([0, T ]; H−s(Ω)) for some s > 0.

For the energy flux ρnunθn, since
√

ρnun and
√

ρnθn converge strongly in L2(Ω′×(0, T ))
to
√

ρu and
√

ρθ respectively, ρnunθn converges strongly in L1(Ω′ × (0, T )) to ρuθ. For
the energy flux ρnun|un|2, the strong convergence of ρ

−1/2
n in C([0, T ];Lp(Ω′)) for all

p < 6 implies that ρ
−1/6
n converges strongly to ρ−1/6 in C([0, T ];L3(Ω′)). Hence, the term

ρ
−1/6
n

√
ρnun converges strongly to ρ−1/6√ρu in L2([0, T ];L6/5(Ω′)), because of the strong

convergence of
√

ρu in L2(Ω′ × (0, T )). And Lemma 4.1 implies that ρ
1/3
n un is uniformly

bounded in Lδ(Ω′ × (0, T )) for some δ > 3. This fact, combining with the interpolation
inequality, gives the strong convergence of ρu|u|2 in L1(Ω′ × (0, T )). The analysis at the
end of Section 4 tells the strong convergence of ρnunPe(ρn) and unpn in L1(Ω′ × (0, T ))
to ρuPe(ρ) and up, respectively. Thus, the energy flux un(E ′n + pn) converges strongly to
u(E ′ + p) in L1(Ω′ × (0, T )).

The strong convergence of θ in Lp([0, T ];Lq(Ω′)) for p < a and q < 3a implies that θ
a/2
n

converges strongly in L2([0, T ]; L3(Ω′)) to θa/2. This fact, together the strong convergence
of ρn in C([0, T ]; Lp(Ω′)) for p < 6m − 3, implies that

√
1 + ρn(1 + θ

a/2
n ) converges to√

1 + ρ(1+θa/2) in L2(Ω′×(0, T )). That means κ1/2(ρn, θn) strongly converges to κ1/2(ρ, θ)
in L2(Ω′ × (0, T )). Similarly, it follows that (1 + ρn)1/2θ

(a+c+1)/2
n converges strongly to

(1+ρ)1/2θ(a+c+1)/2 in L2(Ω′×(0, T )) due to the strong convergence of ρn and θn. Therefore,
κ0(ρn, θn)(1+ρn)1/2(1+θn)(a+c+1)/2 converges strongly to κ0(ρ, θ)(1+ρ)1/2(1+θ)(a+c+1)/2

in L2(Ω′ × (0, T )). On the other hand, we deduce from (4.4) that (1 + ρn)1/2∇(1 +
θn)(a−c+1)/2 is uniformly bounded in L2(Ω × (0, T )), hence weakly converges to some
element ω in L2(Ω× (0, T )). It also follows that ∇(1 + θn)(a−c+1)/2 is uniformly bounded
in L2(Ω× (0, T )), and hence weakly converges to ∇(1+ θ)(a−c+1)/2 in L2(Ω′× (0, T )). Due
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to the strong convergence of ρn in L2(Ω′ × (0, T )), we deduce that ω = (1 + ρ)1/2∇(1 +
θ)(a−c+1)/2. Finally, we write

κ(ρn, θn)∇θn = κ0(ρn, θn)(1 + ρn)(1 + θn)a∇θn

= κ0(ρn, θn)(1 + ρn)1/2(1 + θn)(a+c+1)/2(1 + ρn)1/2∇(1 + θn)(a−c+1)/2.

This, together with the strong convergence of κ0(ρn, θn)(1 + ρn)1/2(1 + θn)(a+c+1)/2 and
the weak convergence of (1+ρn)1/2∇(1+θn)(a−c+1)/2, implies that κ(ρn, θn)∇θn converges
to κ(ρ, θ)∇θ at least in the sense of distributions.

For the viscous terms,
√

µ(ρn)D(un) and
√
|λ(ρn)|divun converges weakly to

√
µ(ρ)D(u)

and
√
|λ(ρ)|divu respectively in L2(Ω′×(0, T )), because of the hypothesis (2.2), the uniform

bound on ρn in Lemma 3.2, and the uniform estimate (4.1). On the other hand, ρ
1/3
n un

strongly converges to ρ1/3u in L3(Ω′ × (0, T )) and ρ
−1/3
n

√
µ(ρn), as well as ρ

−1/3
n

√
λ(ρn)

converges strongly to ρ−1/3
√

µ(ρ) and ρ−1/3
√

λ(ρ) respectively in L∞([0, T ];L6(Ω′)). Hence
Ψnun converges to Ψu at least in the sense of distributions.

Finally, we deal with the convergence of two nonlinear terms: (un × Hn) × Hn and
ν(ρn, θn)Hn × (∇×Hn). First, since Hn converges strongly to H in Lp([0, T ]; Lq(Ω′)) for
some p > 5 and some q > 5/2, un ×Hn weakly converges to u ×H in Lp([0, T ]; Lq(Ω′))
for some p > 5/4 and q > 5/3 because un converges weakly to u in L5/3([0, T ];L5(Ω′)).
From this, we can deduce that (un ×Hn) ×Hn converges to (u ×H) ×H in the sense
of distributions. Second, the strong convergence of ρn, θn, Hn and the hypothesis (2.6)
imply that ν(ρn, θn)Hn converges strongly to ν(ρ, θ)H in Lp([0, T ];Lq(Ω′)) for some p > 5
and some q > 5/2. By the weak convergence of Hn in L2([0, T ];H1(Ω)), one deduce that
ν(ρn, θn)Hn×(∇×Hn) converges to ν(ρ, θ)H×(∇×H) at least in the sense of distributions.

Therefore, the energy conservation equation (1.1c) holds at least in the sense of distri-
butions.

Step 4: Convergence of the magnetic field equation. Similar to the argument in Step
3, we can show that ν(ρn, θn)∇×Hn converges weakly to ν(ρ, θ)∇×H in L2(Ω′× (0, T )).
Also the strong convergence of Hn in Lp([0, T ];Lq(Ω′)) for some p > 5 and some q > 5/2
and the weak convergence of un in L5/3([0, T ]; L5(Ω′)), imply that un ×Hn converges to
u ×H at least in the sense of distributions. Hence, the induction equation holds at least
in the sense of distributions.

The proof is complete.
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