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Abstract

We examine the existence of traveling wave solutions for a continuum neuronal
network modeled by integro-differential equations. First, we consider a scalar field
model with a general smooth firing rate function and a spatio-temporally varying
stimulus. We prove that a traveling front solution that is locked to the stimulus
exists for a certain interval of stimulus speeds. Next, we include a slow adaptation
equation and obtain a formula, which involves a certain adjoint solution, for the
stimulus speeds that induce locked traveling pulse solutions. Further, we use singu-
lar perturbation analysis to characterize an approximation to the adjoint solution.
Numerical simulations are used to illustrate the traveling fronts and pulses that we
study and to gain further insight into the adjoint solution.

1 Introduction

Traveling waves in neural field models have been the subject of extensive mathematical

investigation (reviewed in [6, 5]). The motive for the study of these waves comes from

numerous experiments in brain slices. Putative roles for these waves are discussed in

[7, 19]. Early work [3, 11] showed that it is possible to evoke propagation of traveling

waves in brain slices that have been treated with drugs that block inhibition. Recently,

experimentalists have become interested in the effects of heterogeneity and stimuli on

these waves. For example, certain experiments examined the induction of traveling waves

in cortical slices in which there were varying densities of cells [16, 4]. Reflections and
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blocking of these waves occurs, as do changes in preferred directionality. Stimuli can have

dramatic effects on waves. Xu et al. [20] show complex effects arising in visually evoked

waves in rat cortex and more recently have shown that stimuli at two different locations

can modulate the resulting waves ([18] and Xu, personal communication). Richardson et

al. [17] showed that electrical fields could be used to block, speed up, and slow down

evoked waves.

Neural field models represent reductions and approximations of more “realistic” conductance-

based models with the advantage of being much easier to analyze. Recently, the emergence

of traveling waves, and other spatiotemporal patterns, was shown to occur in a neural field

model to which a spatiotemporally varying stimulus was applied [1, 9, 10]. As in much

of the work in this area, a Heaviside firing rate function was used in these papers. This

simplification allows for the derivation of closed form solutions to the relevant field equa-

tions and analytical stability analysis, yet biologically, it implies that at each moment in

time, cells are either firing at a unique nonzero constant rate or are not firing at all. The

objective of this work is to study the effects of a spatiotemporally varying stimulus on a

neural field model with a more realistic, smooth firing rate function. More specifically,

we impose a small stimulus, εI(x, t), where 0 < ε ≪ 1 and I(x, t) = I(x − ct) for some

constant speed c, and we consider for what c values the field is able to follow the stimulus,

in the sense that it supports a traveling wave solution of the same speed.

We analyze both a scalar field model and a model with adaptation. In the former case,

our results build on the work of Ermentrout and McLeod [8], who proved the existence of

monotone traveling fronts for a neural field without spatiotemporally varying stimulation,

in one of the few rigorous works in this area allowing for a general smooth firing rate

function (see also [13, 14]). In the case with adaptation, we assume that the adaptation

evolves slowly relative to the population firing rate and build on the singular perturbation

construction of a traveling pulse solution done previously by Pinto and Ermentrout, in the

absence of spatiotemporally dependent applied stimulation [15].
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2 Traveling fronts for a scalar field equation

2.1 Existence

Consider a single-layer neuronal network model distributed over the real line with a small,

spatiotemporally varying stimulus applied:

∂u(x, t)/∂t = −u(x, t) +
∫ ∞

−∞
J(x − y)F (u(y, t)) dy + εI(x, t). (2.1)

Here, u(x, t) denotes the mean membrane potential of a patch of tissue at position x

and time t, J(x) denotes the distance-dependent synaptic weight function that measures

the strength of excitatory synaptic connections between neurons, F (u) denotes the firing

rate function that depends on the membrane potential u, and εI(x, t) denotes the small,

spatiotemporally varying stimulus, where 0 < ε ≪ 1.

We consider the existence of a traveling front for (2.1) under the hypotheses on J, F

given in [8]:

(H1) The function J(x) is defined, even, nonnegative, and absolutely continuous on IR,

with J ′ ∈ L1(IR) and
∫∞
−∞ J(x) dx = 1.

(H2) The function F (x) is defined and continuously differentiable on [0, 1], with F ′ > 0,

F ′(0) < 1, and F ′(1) < 1. Moreover, the function F (u)−u has precisely three zeros,

at u = 0, u = a, and u = 1, with 0 < a < 1.

To start, define the moving coordinate ξ = x − ct and assume that the stimulus term

I takes the form of a traveling front,

I(ξ) →

{

1, ξ → −∞,
0, ξ → ∞,

and I(ξ) ∈ (0, 1) for all ξ; (2.2)

relevant I(ξ) may be monotone decreasing, but assuming that this property holds is not

necessary. We seek a traveling front solution u(x − ct) = u(ξ) of equation (2.1) with

the same speed c as the stimululs. Note that if ε = 0, or equivalently if I ≡ 0, then

the results in [8] yield the existence of a family of monotone decreasing traveling fronts

u0(ξ) = U(ξ − θ), parametrized by θ ∈ IR (corresponding to translation), with u0(ξ) → 1

as ξ → −∞ and u0(ξ) → 0 as ξ → ∞, for a special speed c = c0. We assume that

(H3)
∫ 1
0 (F (u) − u) du 6= 0,
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such that c0 6= 0. The work in [8] can be used to establish the following result.

Proposition 2.1 For the solution u0 of equation (2.1) with ε = 0, u′
0(ξ) ∈ L2(IR).

proof: F and u0 satisfy the equation ([8], pg. 465)

−c0

∫ ∞

−∞
(u′

0)
2F ′(u0) dξ =

∫ 1

0
{−u0 + F (u0)} du0,

so
∫∞
−∞(u′

0)
2F ′(u0) dξ takes a nonzero finite value, say i0, by (H3). Moreover, by (H2), F ′

is strictly positive and continuous on [0, 1], such that it has a positive lower bound, call it

m. Thus, i0 > 0 and
∫∞
−∞(u′

0)
2 dξ ≤ i0/m < ∞, as desired. 2

To find traveling front solutions in the presence of the stimulus term I(ξ), we rewrite

equation (2.1) in a moving frame, up to first order in ε, as

−(c0 + εc1)du/dξ = −u + J(ξ) ∗ F (u(ξ)) + εI(ξ), (2.3)

where c = c0 + εc1 + O(ε2) and u = u0 + εu1 + O(ε2). The following theorem characterizes

traveling front solutions to equation (2.3).

Theorem 2.2 Let u0 denote the nontrivial traveling front solution to equation (2.1) with

ε = 0 and let c0 be the corresponding wave speed. There is a unique nontrivial function

u∗ ∈ L2(IR) that satisfies the adjoint equation

L∗u∗ := (c0d/dξ + 1)u∗ − F ′(u0(ξ))(J(ξ) ∗ u∗(ξ)) = 0 (2.4)

together with the normalization condition

∫ ∞

−∞
u∗(ξ)u′

0(ξ) dξ = 1.

Moreover, equation (2.3) has a solution u0(ξ) + εu1(ξ), with

u1(ξ) →







0, ξ → ∞

(1 − F ′(1))−1 ∈ (1,∞), ξ → −∞,
(2.5)

if and only if c1 ∈ [0, C), where

0 < C := sup
θ∈IR

(−
∫ ∞

−∞
u∗(ξ − θ)I(ξ) dξ) ≤ C̄ := −

∫ ∞

−∞
u∗(ξ) dξ. (2.6)
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proof: At lowest order in ε, equation (2.3) is satisfied by u0(ξ − θ) for any choice of θ. At

first order, for fixed θ ∈ IR, the equation for u1 becomes

−c0u1ξ
+ u1 − J(ξ) ∗ [F ′(u0(ξ − θ))u1(ξ)] = c1u0ξ

+ I(ξ). (2.7)

Rewrite the left hand side of equation (2.7) as Lu1 for L : L2(IR) → L2(IR). The operator L

has u′
0(ξ−θ) < 0 in its nullspace, based on differentiation with respect to ξ of the equation

satisfied by u0 and application of Proposition 2.1. Hence, by the Fredholm Alternative,

there exists u∗(ξ−θ), a nontrivial solution to the corresponding adjoint equation, L∗u = 0,

satisfying u∗ ∈ L2(IR).

Assuming that the solution u∗ is sign-definite, it can be normalized such that

∫ ∞

−∞
u∗(ξ)u′

0(ξ) dξ = 1, (2.8)

and equation (2.7) has a solution if and only if

〈u∗(ξ − θ), c1u0ξ
+ I(ξ)〉 = 0. (2.9)

Condition (2.9) is equivalent, based on the normalization (2.8) and the fact that u0(ξ) is

monontone decreasing, to the condition

c1 = −
∫ ∞

−∞
u∗(ξ − θ)I(ξ) dξ ≡ S(θ) > 0. (2.10)

Thus, we expect to obtain a band of solutions, corresponding to c1 values between the

minimum and maximum values of S(θ). Based on the behavior of I(ξ) assumed in (2.2),

these values are 0 and C ∈ (0, C̄], as given in equation (2.6), respectively.

It remains to derive the adjoint equation (2.4) and to conclude that u∗ is indeed sign-

definite. If we write out the first order equation (2.7) in more detail, we see that

〈Lu, v〉 =
∫ ∞

−∞
[(−c0d/dξ + 1)u(ξ)]v(ξ) dξ −

∫ ∞

−∞
v(ξ)

∫ ∞

−∞
J(ξ − η)F ′(u0(η − θ))u(η) dη dξ.

If we apply integration by parts to the first integral and rewrite the second by Fubini’s

Theorem, then we obtain

〈Lu, v〉 =
∫ ∞

−∞
[(c0d/dξ + 1)v(ξ)]u(ξ) dη −

∫ ∞

−∞
u(η)[F ′(u0(η − θ))

∫ ∞

−∞
J(ξ − η)v(ξ) dξ] dη.
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Hence, the relevant adjoint equation is

L∗
θu

∗ := (c0d/dξ + 1)u∗ − F ′(u0(ξ − θ))(J(ξ) ∗ u∗(ξ)) = 0.

Theorem 4.3 of [8] implies that for any fixed θ ∈ IR, this equation has a solution that is

unique, up to multiplication by a nonzero constant, and is sign-definite, which justifies

the normalization (2.8). Finally, equation (2.5) follows from taking ξ → ±∞ in (2.7) and

noting that u1ξ
(±∞) = u0ξ

(±∞) = u0(∞) = I(∞) = 0, u0(−∞) = 1, I(−∞) = 1, and

F ′(1) < 1. 2

Remark 2.3 Note that since u∗ is sign-definite, the sign of c1 is determined by the sign

of the stimulus I. If I is replaced by −I, then the sign of c1 switches but its magnitude

remains unchanged. Thus, the theory shows that application of small stimuli can speed

up or slow down traveling fronts by equal amounts. We shall see that this is not the case

when adaptation is included in the model, in the next section.

2.2 A special case: comparison to previous results

Although it does not have a derivative with a positive bound for u ∈ [0, 1], we formally

consider the special case of a Heaviside firing rate, F (u) = H(u − κ), so that we can

compare Theorem 2.2 to previous results [10]. Without loss of generality, assume that

u0(0) = κ; that is, θ = 0. In this case, the adjoint equation (2.4) formally becomes

c0w
′ + w = δ(u0(ξ) − κ)

∫ ∞

−∞
J(ξ − η)w(η) dη. (2.11)

To solve equation (2.11) for w(ξ), use the integrating factor eξ/c0 and integrate to obtain

w(ξ)eξ/c0 =
1

c0

∫ ξ

−∞
eζ/c0δ(u0(ζ) − κ)

∫ ∞

−∞
J(ζ − η)w(η) dη dζ. (2.12)

Since ζ ∈ (−∞, ξ), it follows that δ(u0(ζ) − κ) ≡ 0 for ξ < 0. Using this observation and

switching the order of integration in (2.12) yields, for ξ > 0,

w(ξ)eξ/c0 =
1

c0

∫ ∞

0

J(η)w(η)

|u′
0(0)|

dη ≡ B, (2.13)

where B is a constant. That is, w(ξ) = BH(ξ)e−ξ/c0 for some constant B, where H as

usual denotes the Heaviside step function.
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To check the consistency of this solution, assume ξ > 0 and substitute it into both

sides of equation (2.13) to obtain

B =
B

c0

∫ ∞

0

J(η)e−η/c0

|u′
0(0)|

dη. (2.14)

For consistency, the right hand side of equation (2.14) should equal B. This is indeed the

case for the choice J(x) = e−|x|/2 since, using the corresponding calculation

u′
0(ξ) = −e−ξ/(2(1 + c0)) (2.15)

from [8] or [10] evaluated at ξ = 0, we have

B

c0

∫ ∞

0

J(η)e−η/c0

|u′
0(0)|

dη =
2B(1 + c0)

c0

∫ ∞

0

1

2
e−ηe−η/c0 dη =

B(1 + c0)

c0(1 + 1
c0

)
= B,

as desired. Note that this solution of equation (2.4), applied for arbitrary θ, yields

w(ξ − θ) = BH(ξ − θ)e−(ξ−θ)/c0 . (2.16)

Now, to compute B, we use the normalization equation (2.8), with u∗ = w from

equation (2.16) and u′
0(ξ) from equation (2.15), to obtain

1 = B
∫ ∞

0
e−ξ/c0u′

0(ξ) dξ = −B
∫ ∞

0
e−ξ/c0

e−ξ

2(c0 + 1)
dξ.

After some calculation, we find B = −2(1 + c0)(
1
c0

+ 1).

Finally, the speed term c1 is given by equation (2.10). To compare to the speed obtained

previously for a stimulus with O(ε) amplitude [10], take I(ξ) = I0H(−ξ). Note that the

lower bound for c1 is 0, obtained from (2.10) for θ > 0. For θ < 0, (2.10) becomes

c1 =
∫∞
−∞ 2(1 + c0)(

1
c0

+ 1)H(ξ − θ)e−(ξ−θ)/c0I0H(−ξ) dξ

= 2I0(1 + c0)(
1
c0

+ 1)
∫ 0
θ e−(ξ−θ)/c0 dξ.

(2.17)

Using the fact that c0 = (1−2κ)/(2κ) from [8], evaluation of this integral and some algebra

yields

c1 =
I0(1 − eθ/c0)

2κ2
. (2.18)

Thus, the upper bound for c1 is I0
2κ2 , which is approached as θ → −∞. According to [10],

the right boundary of the existence region in the (c, I0)-plane is given by c = 1
2(κ−εI0)

− 1.
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Note that this speed is approached as ξ0 → −∞. Rewriting this expression for c as c0 +εc1

with c0 = 1
2κ

− 1 and solving for c1 results in

c1 =
I0

2κ(κ − εI0)
=

I0

2κ2
+ O(ε). (2.19)

Consequently, our existence regions agree within O(ε) to those of [10]; that is, for both

techniques, c ∈ [c0 = 1
2κ

− 1, c0 + ε( I0
2κ2 + g(κ, I0, ε))) where g(κ, I0, ε) = O(ε) and 0 < κ ≤

1/2.

2.3 Numerical examples

In this subsection, we present typical numerical simulations of equation (2.1). These results

show examples of the successful propagation of traveling fronts that track moving stimuli

as well as examples of failures to track. Of course, it is not possible to simulate (2.1) on the

whole real line in space or time. For each example, we consider the domain x ∈ [−1, 1] and

we choose a stimulus function I(ξ) and a relevant initial condition u(x, 0) for x ∈ [−1, 1].

In some cases, we assume that the stimulus function I(ξ) is the Heaviside step function

H(−ξ − b) for some choice of b ∈ (0, 1) and c > 0, with ξ = x − ct, such that (2.2) is

satisfied. To approximate the arrival of a traveling front solution of (2.1) to a particular

interval of x values within a larger (e.g. infinite) spatial domain, we simulate with initial

conditions u(x, 0) > 0 for x near −1 and u(x, 0) = 0 for all other x ∈ [−1, 1]. We predict

that, for this initial configuration with stimulus εI(ξ) applied for small ε > 0, we will

observe activity propagating in the direction of increasing x with speed c, the speed of the

stimulus, if and only if c is sufficiently close to the interval [c0, c0 + εC), where C is given

by equation (2.6). Similarly, we also consider stimuli −εI(ξ) = −εH(−ξ− b), to follow up

on Remark 2.3, and we expect to observe propagation on (c0 − εC, c0] in this case.

For our simulations, we use F (u) = 1/(1 + exp(−20u + 5)) and J(x) = 10 exp(−20|x|)

and normalize the natural, unstimulated wave speed to c0 = 1. Consider first a simulation

in which we start with u activated in the leftmost 5% of the domain by using initial

conditions u(x, 0) = .9H(−x − 0.9) and with the front of the stimulus, which will move

with speed c, slightly ahead of the activated region, choosing b = 0.8 such that I(x, 0) =

H(−x−0.8). We find that for a stimulus magnitude of ε = 0.01, the interval of speeds for

which stimulus-locked traveling fronts exist is roughly c ∈ [1, 1.2). For a stimulus speed of
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c = 1.1, for example, the front that is initiated by the initial conditions succeeds in tracking

closely behind the stimulus and propagating from left to right with the same speed as the

stimulus front. This is illustrated in Figure 1(a), where we plot u(x, t)+10εI(x, t) to show

the close tracking of the wave front to the stimulus front. With all the same conditions

and a faster stimulus speed of c = 1.3, the simulated wave front fails to keep up with the

faster stimulus front, falling farther and farther behind as seen in Figure 1(b).

Next, we consider the case of a negative (inhibitory) stimulus of the same magnitude.

That is, we replace εI(x, t) with −εI(x, t) and keep all other conditions the same, and we

find that the existence interval for stimulus-locked traveling fronts is roughly c ∈ [0.8, 1).

This is consistent with our analysis that shows that two stimuli of the same magnitude but

opposite sign can speed up or slow down traveling fronts by the same amount (see Remark

2.3). A successful stimulus-locked traveling front is shown in Figure 1(c) for c = 0.9 while

a failure to track is shown in Figure 1(d) with c = 0.7, where u(x, t)− 10εI(x, t) is plotted

in each case to show the relation of the traveling front to the stimulus front. We note that

the successful, stimulus-locked fronts in Figures 1(a),1(c) correspond to the analytically

computed traveling fronts. However, the front-like solutions in Figures 1(b),1(d) that do

not lock to the stimulus do not represent true traveling wave solutions on the entire real

line, but rather provide evidence that traveling wave solutions do not exist for those values

of c outside of the existence interval.

Remark 2.4 The particular interval of speeds c for which stimulus-induced wave propa-

gation succeeds depends on the form of I(ξ), in addition to its amplitude, as indicated in

equation (2.6). For example, suppose we replace the Heaviside stimulus with a monotone

increasing sidmoidal stimulus I(ξ) = 1/(1 + exp((−ξ − b)/σ)), σ > 0. Successful stimulus

tracking occurs on progressively larger intervals of c as σ increases. Tracking does not

seem to be particularly sensitive to the particular value selected for b.
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Figure 1: Stimulus-locked traveling fronts. (a),(c) Successful and (b),(d) failed propagation
with (a),(b) εI(x, t) = 0.01H(−(x−ct)−0.8) and (c),(d) εI(x, t) = −0.01H(−(x−ct)−0.8).
For these simulations, F (u) = 1/(1 + exp(−20u + 5)) and J(x) = 10 exp(−20|x|).
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3 Traveling pulses with slow adaptation

We now include a slow adaptation equation in the neural field model under consideration

and seek to extend an earlier singular perturbation construction of a pulse solution [15] to

allow for the inclusion of a small, spatiotemporally pulsatile stimulus. Unlike the analysis

in Section 2.1, our approach here is not fully rigorous. In particular, we do not have suf-

ficient information about the derivative of the pulse solution to draw rigorous conclusions

about the existence and uniqueness of a solution to a relevant adjoint equation. We will

nonetheless proceed formally to derive a formula for the stimulus speeds for which trav-

eling pulses are predicted to exist. Furthermore, for numerical experimentation and more

precise estimation of the stimulus speeds that can be tracked, we will consider solutions

with the particular weight function J(x) = 1
2
e−|x| and approximate the homoclinic solution

corresponding to the pulse solution with a large amplitude periodic solution.

With adaptation, the model equations that we consider become

∂u(x, t)/∂t = −u(x, t) +
∫∞
−∞ J(x − y)F (u(y, t)) dy − q(x, t) + εIa(x, t)

(1/κ)∂q(x, t)/∂t = −βq(x, t) + u(x, t),
(3.20)

where 0 < κ ≪ 1, 0 < ε ≪ 1, and q(x, t) represents a negative feedback recovery mecha-

nism such as spike frequency adaptation. We introduce the moving coordinate ξ = x − ct

and assume a pulsatile stimulus with Ia(x, t) = Ia(ξ) → 0 as ξ → ±∞. We seek traveling

pulse solutions that are locked to the stimulus. Using our earlier notation for convolutions,

traveling pulse solutions to (3.20) satisfy

−cu′(ξ) = −u(ξ) + J ∗ F (u(ξ))− q(ξ) + εIa(ξ),

(−c/κ)q′(ξ) = u(ξ) − βq(ξ),
(3.21)

together with the boundary conditions (u, q)(ξ) → 0 as ξ → ±∞.

3.1 Fredholm alternative gives expression for relevant wavespeeds

Write c = c0 + εc1, u = u0 + εu1, q = q0 + εq1 to leading order in the small parameter ε,

with

u1, q1 → 0 as ξ → ±∞. (3.22)
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With this notation, system (3.21) becomes

−(c0 + εc1)(u0ξ
+ εu1ξ

) = −(u0 + εu1) + J ∗ F (u0 + εu1) − (q0 + εq1) + εIa,

−(1/κ)(c0 + εc1)(q0ξ
+ εq1ξ

) = (u0 + εu1) − β(q0 + εq1).
(3.23)

Since we know that a pulse (u0(ξ), q0(ξ)) exists in the unstimulated case with ε = 0 from

[15], we solve for the O(ε) correction terms introduced by the stimulus. At O(ε), we find

−c1u0ξ
− c0u1ξ

= −u1 + J ∗ F ′(u0)u1 − q1 + Ia

−(1/κ)(c1q0ξ
+ c0q1ξ

) = u1 − βq1.
(3.24)

Rewrite equation (3.24) as

La

(

u1

q1

)

:=

(

−c0u
′
1 + u1 − J(ξ) ∗ F ′(u0)u1 + q1

−c0q
′
1/κ − u1 + βq1

)

=

(

c1u
′
0 + Ia

c1q
′
0/κ

)

=

(

Ia

0

)

+ c1

(

u′
0

q′0/κ

)

.

(3.25)

Let (u∗(ξ − θ), q∗(ξ − θ)) denote any solution to the adjoint equation L∗
a

(

u∗

q∗

)

= 0,

parameterized by θ ∈ IR, corresponding to translation invariance of traveling wave solutions

of (3.20). According to the Fredholm alternative, system (3.25) has a nontrivial solution

if and only if for some such (u∗, q∗),

∫ ∞

−∞
c1(u

′
0(ξ)u

∗(ξ − θ) + q′0(ξ)q
∗(ξ − θ)/κ)dξ +

∫ ∞

−∞
Ia(ξ)u

∗(ξ − θ)dξ = 0.

Normalizing such that

∫ ∞

−∞
(u′

0(ξ)u
∗(ξ − θ) + q′0(ξ)q

∗(ξ − θ)/κ)dξ = 1 (3.26)

yields the result that traveling pulses exist for speeds c = c0 + εc1 + O(ε2), where

c1 = −
∫ ∞

−∞
Ia(ξ)u

∗(ξ − θ)dξ. (3.27)

Remark 3.1 In subsection 3.2, we approximate the traveling pulse by a singular periodic

orbit consisting of segments along a slow manifold and fast jumps between these segments.

The adjoint solution corresponding to this periodic orbit is unique up to constant multi-

plication, suggesting that the nontrivial solution (u∗, q∗) of L∗
a

(

u∗

q∗

)

= 0, appearing in

equations (3.26), (3.27), is unique as well.
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Remark 3.2 Our subsequent calculations, in subsection 3.2, and numerical simulations,

in subsection 3.3, illustrate that u∗ need not be sign-definite, unlike the case of traveling

fronts without adaptation. Hence, in the presence of a particular stimulus, waves may

exist for an interval of speeds that is not symmetric about the unstimulated speed c0.

3.2 Behavior of the solution to the adjoint equation

To gain more information about our estimate of c1, given by equation (3.27), we seek

to characterize the behavior of nontrivial solutions (u∗, q∗) to the adjoint equation corre-

sponding to (3.25). To do so, it is convenient to approximate the traveling pulse solution

by a periodic orbit of large period, so that we can use certain theoretical results obtained

for adjoint solutions to such periodic solutions. Previous work has established that the

singular perturbation construction of traveling pulses to a reaction-diffusion analogue of

(3.20) on the real line, in the absence of stimulation, generalizes directly to give the exis-

tence of a periodic solution on a finite spatial domain with periodic boundary conditions

[2]. Indeed, the argument for the existence of traveling pulses in [15] shows how to gener-

alize the construction in [2] to the unstimulated form of (3.20), and the extension to the

periodic case follows immediately.

Let w = J ∗ F (u), the convolution term from system (3.20). We will consider the

special case of

J(x) =
1

2
e−|x|, (3.28)

such that application of the Fourier transform yields ŵ(k) = [F̂ (u)](k)/(1 + k2). In

this case, [F̂ (u)](k) = (1 + k2)ŵ(k), such that inversion of the Fourier transform gives

F (u) = w − w′′, for ′ = d/dξ. With this notation in place, traveling pulse solutions to

the unstimulated form of (3.20), namely solutions to (3.21) with ε = 0, correspond to

homoclinic solutions of
−cu′ = −u + w − q

−cq′ = κ(u − βq)

w′ = z

z′ = w − F (u),

(3.29)

with 0 < κ ≪ 1. We seek periodic solutions of this system that approximate the homoclinic

solution. We will also use the fast subsystem defined from (3.29) by setting κ = 0, which
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consists of the u, w, z equations from (3.29) together with q′ = 0, such that q is constant.

The slow formulation of system (3.29) is

−cκu̇ = −u + w − q

−cq̇ = u − βq

κẇ = z

κż = w − F (u),

(3.30)

where differentiation is with respect to ζ = κξ. The singular slow flow for this system is

given by setting κ = 0 in (3.30), to obtain

−cq̇ = u − βq. (3.31)

This flow is relevant on the slow manifold S defined by u − w + q = 0, z = 0, w = F (u),

or equivalently {(u, q, w, z) : z = 0, q = F (u) − u}, in the κ → 0 limit. Projected

to (u, q) space, S takes the form shown in Figure 2, and a singular periodic solution

should be defined in the direction indicated by the arrows in the figure, given that d/dζ =

(−1/cκ)(d/dt), if we consider the case c > 0.

u

q F(u)−u

Figure 2: A schematic illustration of the projection of the slow manifold S and the singular
periodic solution to (u, q) space.

Before we proceed further, we make two important observations. First, note that the

adjoint system to (3.29), reordered to put the slow q equation last, is

(x∗)′ = M∗x∗, (3.32)

14



where x∗ = [u∗ w∗ z∗ q∗]T and

M∗ =











−1/c 0 F ′(u) κ/c
1/c 0 −1 0
0 −1 0 0

−1/c 0 0 −βκ/c











. (3.33)

If we instead directly consider the equation La

(

u
q

)

= 0, with La from (3.25), then the

corresponding adjoint equations are

(u∗)′ = (F ′(u)J ∗ u∗ − u∗ + κq∗)/c,

(q∗)′ = (−u∗ − κβq∗)/c.

Now, let z∗ = (J ∗ u∗)/c. Using the form of J given in (3.28), the Fourier transform yields

û∗(k) = c(1 + k2)ẑ∗(k), such that u∗/c = z∗ − (z∗)′′. Finally, if we set w∗ = −(z∗)′, then

we recover the adjoint system (3.32), (3.33). Thus, the (u∗, q∗) components to solutions

to the adjoint equations for system (3.29) satisfy the adjoint equation L∗
a

(

u∗

q∗

)

= 0 that

is relevant for speed estimation through equations (3.26), (3.27) and vice versa.

By construction, solutions of (3.21) with ε = 0 satisfy system (3.29). The second

observation that we make here is that all solutions to (3.29) also satisfy (3.21) with ε = 0.

This can be seen by direct solution of the equation w′′ − w = −F (u) with variation

of parameters. Indeed, when done on the real line, for example, this calculation yields

w(ξ) = 1
2

∫∞
−∞ F (u(ξ))e−|η−ξ| dη = J ∗ F (u), as desired.

Next, we would like to apply Theorem A.1 from [12] to characterize the limit to which

the solution (u∗(ζ), q∗(ζ), w∗(ζ), z∗(ζ)) to the adjoint equations (3.32),(3.33), expressed

with respect to the slow time ζ = κξ, tends as the singular perturbation parameter κ ↓ 0.

As it is stated, this theorem applies to a relaxation oscillation solution that, in the singular

limit, makes fast jumps from the knees of an underlying cubic-shaped slow manifold. The

theorem provides explicit formulas for the jumps in the components of the adjoint solution

that occur when the underlying relaxation oscillation jumps up and down. These formulas

depend on the direction tangent to which the jumps originate. This direction is given by a

left eigenvector of the Jacobian matrix of a fast subsystem, corresponding to the eigenvalue

λ = 0 that exists precisely at the knees. In our notation, the knees are those points on S

such that F ′(u) = 1. However, since we consider a traveling pulse solution, the relevant

jumps do not occur where F ′(u) = 1. Nonetheless, we can easily generalize the theorem
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and its formulas by picking out the tangent eigenvector to the jump directions. Further

details of the relevant calculations are given in the appendix.

Let u = gα(q) denote the solutions to q = F (u)−u on the left branch of S, with α = L,

and on the right branch of S, with α = R. Implicit differentiation on S yields

1 = (F ′(gα(q)) − 1)g′
α(q). (3.34)

On S, the slow flow (3.31) becomes

q̇ = (βq − gα(q))/c.

Moreover, from the slow formulation of (3.32),(3.33) in the κ → 0 limit and equation

(3.34), it follows that the corresponding slow adjoint equation is

q̇∗ = −(β/c)q∗ + (1/c)g′
α(q)q∗, (3.35)

with corresponding normalization condition [12]

q∗(βq − gα(q))/c = 1. (3.36)

Assume that a periodic orbit of system (3.30) has period ζp, let ζ1 < ζ2 ∈ (0, ζp)

denote the two jump times associated with the orbit, and suppose that each jump takes

off from a point aj and lands at a point bj . For any function f , let f(ζ−
j ) = limζ↑ζj

f(ζ) and

f(ζ+
j ) = limζ↓ζj

f(ζ). The generalization of Theorem A.1 of [12] implies (see the appendix)

that

q∗(ζ+
j ) = q∗(ζ−

j ) − c

(

G(bj) − G(aj)

G(aj)G(bj)

)

, j = 1, 2, (3.37)

where G(x) = (βq − gα(q))|(u,q,w,z)=x. Moreover,







u∗

w∗

z∗





 (ζ) =







1/(1 − F ′(u))
0

1/(c(1 − F ′(u)))





 q∗(ζ) +







c2

cλ/(1 − λ2)
c/(1 − λ2)







(

G(bj) − G(aj)

G(aj)G(bj)

)

δ(ζ − ζj),

(3.38)

where λ is a certain eigenvalue of the Jacobian matrix of the fast subsystem of (3.29).

Since we are not concerned with the jumps in w∗, z∗, we do not give an explicit formula

for λ. Importantly, our original hypothesis that F ′ > 0, within (H2), implies that λ 6= 1;

see the appendix for further details.
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Remark 3.3 A transversality assumption is made in Theorem A.1 of [12] that here

amounts to λ 6= 1. In fact, we shall see in the Appendix that λ 6= 1 is guaranteed by

our assumption that F ′(u) 6= 0.

At the jump up of the periodic solution,

G(b1) − G(a1)

G(a1)G(b1)
=

gL(q(ζ1)) − gR(q(ζ1))

(βq(ζ1) − gL(q(ζ1)))(βq(ζ1) − gR(q(ζ1)))
> 0, (3.39)

which yields q∗(ζ+
1 ) < q∗(ζ−

1 ) from (3.37). At the jump down,

G(b2) − G(a2)

G(a2)G(b2)
=

gR(q(ζ2)) − gL(q(ζ2))

(βq(ζ2) − gR(q(ζ2)))(βq(ζ2) − gL(q(ζ2)))
< 0, (3.40)

which yields q∗(ζ+
2 ) > q∗(ζ−

2 ). Between these jumps, q∗ experiences an exponential ζ-

dependence, as specified by equation (3.35). The magnitudes and signs of the jumps in

u∗, namely u∗(ζ+
i ) − u∗(ζ−

i ) for i = 1, 2, will depend on the comparison of F ′(u(ζ+
i )) with

F ′(u(ζ−
i )), as specified in equation (3.38). Interestingly, it can also be seen from equations

(3.38), (3.39), (3.40) that in the singular limit, the signs of the δ-function excursions of u∗

at the two jumps will be in opposite directions.

3.3 Numerics

In theory, equations (3.37)–(3.40), together with the exponential behavior of q∗ between

jumps as given by (3.35), characterize the function u∗(ξ− θ) for any fixed θ, and hence fix

the speed c1 through equation (3.27). In this subsection, we first consider some numerical

simulations of traveling pulse solutions of (3.20), and then we turn to some simulations

that illustrate further properties of u∗.

As in the 1-d case, we work on x ∈ [−1, 1], and we retain the same functions F and

J used in Section 2.3, but we now assume that each stimulus function is a hat-shaped

pulse with εI(ξ) = I0H(−ξ − 0.8)H(ξ + 1) for I0 ∈ {±0.01,±0.05} for some choice of

c > 0 and ξ = x − ct. Also, in (3.20) we choose β = 0 and κ = 0.15 as in Figure 7 of

[15]. The parameters used yield an unstimulated pulse speed of c0 = 1. We activate the

leftmost 5% of the domain with initial conditions u(x, 0) = .7H(−x−0.9) and initiate the

stimulus pulse with its leading edge at x = −0.8, slightly ahead of the activated region.

With I0 = 0.05 and a stimulus speed of c = 1.7, for example, the pulse that is initiated
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by the initial conditions appears to succeed in tracking closely behind the stimulus and

propagating from left to right with the same speed as the stimulus pulse. This result is

illustrated in Figure 3(a), where we plot u(x, t) + 4εI(x, t) to show the close tracking of

the wave pulse to the stimulus pulse. With all the same conditions and a faster stimulus

speed of c = 1.8, the simulated wave pulse fails to keep up with the faster stimulus pulse,

as shown in Figure 3(b).

For the negative (inhibitory) stimulus pulse and all other conditions unchanged, suc-

cessful stimulus-locked traveling pulses are shown in Figures 4(a),4(c) for c = 1.3 and

c = 0.7, respectively. Failures to obtain stimulus-locked pulses are shown in Figures

4(b),4(d) with c = 1.5 and c = .65, respectively. In Figure 4, u(x, t) − 4εI(x, t) is plotted

in each case to show the relation of the traveling pulse to the stimulus pulse.

As in the 1-d case with fronts, we note that the successful stimulus-locked pulses in

Figures 3-4 correspond to traveling pulses on the real line, while the pulse-like solutions

that fail to lock to the stimulus do not represent true traveling pulse solutions on the

real line, but rather provide evidence that traveling pulse solutions do not exist for those

values of c outside of the existence interval. Also as in the case of fronts, successful stimulus

tracking occurs over larger intervals of speeds for stimuli that are sigmoidal approximations

to the Heaviside function, with interval size growing as the slope of the sigmoid decreases.

Unlike the fronts case, we find that for a fixed I0, pulses can track various stimuli with

speeds that are slower or faster than the unstimulated speed, consistent with the idea that

u∗ is not sign-definite in equation (3.27). It is difficult to judge by inspection just when

successful stimulus tracking is or is not occurring in our simulations, particularly since we

are restricted to a domain of finite size. However, when the magnitude of I0 decreases,

say from 0.05 to 0.01, the interval of speeds for which stimulus-locked traveling pulses

exist shrinks and appears to approach the form (c0 − a, c0 + b), a, b > 0 for I0 > 0 and

(c0 − b, c0 + a) for −I0 < 0, again consistent with equation (3.27) and Remark 3.2.
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Figure 3: Stimulus-locked traveling pulses with stimuli of positive amplitude. (a) Success
and (b) failure of propagation with εI(x, t) = 0.05H(−(x − ct) − 0.8)H(x − ct + 1) and
(a) c = 1.7 or (b) c = 1.8. For these simulations, F (u) = 1/(1 + exp(−20u + 5)),
J(x) = 10 exp(−20|x|), β = 0, and κ = 0.15.

Recall that we have done calculations based on periodic solutions of system (3.29) to

approximate the homoclinic traveling wave solutions. Correspondingly, we also consider

periodic solutions numerically. Figure 5 shows an example of a periodic solution of sys-

tem (3.29), projected onto (u, q)-space, together with the slow manifold S and the graph

of (u, F (u)). To find this periodic orbit, we used shooting with time reversed, because

the spectrum of the linearization of the system features three positive and one negative

eigenvalues in forward time. These become one positive and three negative eigenvalues in

reversed time, rendering the shooting problem more tractable.

Numerically, we have computed u∗, q∗ for the reversed time periodic orbit in Figure 5.

Equation (3.40) yields a positive quantity with time reversed, since both the numerator

and denominator are negative. Thus, from equation (3.37), we expect that q∗ will decrease

across the reversed time jump down, and this is what is observed numerically. Similarly,

equation (3.39) yields a negative quantity with time reversed, and we indeed observe an

increase in q∗ across the reversed time jump up.

In this example, the take-offs and landings of both jumps occur from points where

F ′(u) ≈ 0. Hence, we expect that each jump in u∗ will be of a very similar magnitude to

that in q∗, since equation (3.38) implies that

u∗(ζ+
i ) − u∗(ζ−

i ) =

(

1

1 − F ′(u(ζ+
i ))

)

q∗(ζ+
i ) −

(

1

1 − F ′(u(ζ−
i ))

)

q∗(ζ−
i ) ≈ q∗(ζ+

i ) − q∗(ζ−
i );

(3.41)

19



x

t

0

60

 -1 1

-0.45  0.75 

u(x,t)-0.2 I(x,t)

(a) c=1.3

x

t

0

60

 -1 1

-0.45  0.75 

u(x,t)-0.2 I(x,t)

(b) c=1.5

x

t

0

60

 -1 1

-0.45  0.75 

u(x,t)-0.2 I(x,t)

(c) c=0.7

t

0

60

 -1 1

-0.45  0.75 

u(x,t)-0.2 I(x,t)

(d) c=0.65

Figure 4: Stimulus-locked traveling pulses with stimuli of negative amplitude. (a),(c)
Successful and (b),(d) failed propagation under the same conditions illustrated in Figure
3 except εI(x, t) = −0.05H(−(x − ct) − 0.8)H(x − ct + 1).

in particular, each jump in u∗ are predicted to be in the same direction as the corresponding

jump in q∗ for F ′(u(ζ±
i )) small.

More precisely, note (see also Figure 2 and Figure 6) that for each jump, the landing

point is closer to a knee of S than is the corresponding take off point. In reversed time, we

thus have F ′(u(ζ+
i )) < F ′(u(ζ−

i )) for each i. Since q∗(ζ+
2 ) < q∗(ζ−

2 ) from equations (3.37)

and (3.40) with time reversed, it therefore follows from equation (3.41) that u∗(ζ+
2 ) <

u∗(ζ−
2 ). On the other hand, since q∗(ζ+

1 ) > q∗(ζ−
1 ) from equation (3.39) with time reversed,

equation (3.41) does not allow us to analytically guarantee the direction of the jump in
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Figure 5: Estimated periodic solution of (3.29) (solid), slow manifold S (dashed), and
graph of (u, F (u)) (dash-dotted) projected into the (u, q) plane. Here, c = .38, κ = .02, β =
.25, F (u) = 1/(1 + exp(−20u + 5)). The flow along the periodic orbit is clockwise.

u∗ at ζ1. Numerically, both jumps in u∗ are indeed in the same directions as the jumps

in q∗, as expected from (3.41) with F ′(u) small. Moreover, the δ-function excursions of

u∗, with time reversed, are positive at the jump down and negative at the jump up, as

predicted from equation (3.38), given the time reversed inequalities q∗(ζ+
2 ) < q∗(ζ−

2 ) and

q∗(ζ+
1 ) > q∗(ζ−

1 ) noted above.

4 Conclusions

In this work, we have considered the existence of traveling solutions in continuum neu-

ronal models that include a propagating applied stimulus εI(x, t) = εI(x − ct), where

the amplitude parameter ε is small. We work with two forms of neuronal models, one

lacking adaptation that yields traveling front solutions and another with adaptation that

supports traveling pulse solutions. Past work by Folias and Bressloff analyzed traveling so-

lutions in stimulated neuronal media with Heaviside firing rate functions [1, 9, 10]. Papers

by Ermentrout and McLeod [8] and Pinto and Ermentrout [15] considered the existence

of traveling front and pulse solutions, respectively, in related models with more general,

smooth firing rate functions, in the absence of spatiotemporally dependent applied stim-

ulation. The current paper brings together these research directions, allowing for smooth

firing rate functions in the stimulated case.
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u
F(u)

u
u uLK RK

Figure 6: Illustration of F ′(u) at jump points. The knees of S occur at the values u = uLK

and u = uRK , where F ′(u) = 1, as indicated by the corresponding dashed segments. The
directions of the jumps up and down are illustrated by the dashed lines with arrows. The
jump up shown here occurs in the direction of increasing u, from a point below uLK to a
point above, but closer to, uRK , leading to an increase in F ′(u) across the jump. The jump
down occurs in the direction of decreasing u, from a point above uRK to a point below,
but closer to, uLK , also leading to an increase in F ′(u) across the jump.
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Our analysis shows that the Fredholm Alternative can be used to leverage the existence

of a traveling solution in a model lacking stimulation to ascertain the existence of a related,

stimulus-locked traveling solution when a small amplitude stimulus is applied. The range

of speeds over which a solution exists, corresponding to successful tracking of the stimulus,

can be estimated using this approach and depends on the form of the stimulus, although

a general upper bound that does not depend strongly on this form can be derived in the

traveling front case. This range of speeds also depends on the properties of a solution to

an adjoint equation. We were not able to fully characterize the relevant adjoint solutions,

but we do discuss theoretical and numerical results that clarify some of their properties as

well as numerical examples illustrating the intervals of speeds over which twaves success-

fully track propagating stimuli. Interestingly, the analysis and simulations show that the

nature of these intervals differs between the case of a traveling front stimulus in a model

lacking neuronal adapation and the case of a traveling pulse stimulus in a model including

adaptation. In particular, in the case with adaptation, a stimulus of positive amplitude

can induce a traveling pulse with speed slower than that of the unstimulated pulse, while

positive amplitude stimuli always speed fronts up in the absence of adaptation.

5 Appendix

Here, we extract from Theorem A.1 of [12] the specific quantities used to compute the

expressions in equations (3.37), (3.38) and present a brief summary of the corresponding

calculations. For a more complete statement and discussion of this result, see [12].

The vector field for the slow q equation is given by (βq − u)/c. Using u = gα(q), α ∈

{L, R} to denote the solutions of q = F (u)− u as previously, we obtain the slow equation

q̇ = (βq−gα(q))/c on the slow manifold S. From this expression, the corresponding adjoint

equation is q̇∗ = −(β/c)q∗ + (1/c)g′
α(q)q∗, as given in equation (3.35). Note that this is

the same equation as we obtain from system (3.32),(3.33), together with equation (3.34),

in the singular limit κ → 0.

To compute the jumps in the solution of (3.35), we need to find the left eigenvector

wj of the Jacobian matrix of the fast subsystem of (3.29) to which the jump take-offs are
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tangent. The relevant matrix is given by

J =







1/c −1/c 0
0 0 1

−F ′(u) 1 0





 .

If we let λ denote any eigenvalue of J , then a corresponding left eigenvector is given by

wj = [c − cλ2 λ 1]. (5.42)

We shall see below that we will get the same jump directions and magnitudes no matter

what nonzero constant multiple of wj we use to compute them.

Remark 5.1 Note that the characteristic equation of J is λ3−λ2/c−λ+(1/c)(1−F ′(u)) =

0, such that λ = 1 is an eigenvalue if and only if F ′(u) = 0. If F ′(u) = 0, then the

eigenvalues of J are λ = ±1, 1/c. In fact, it can be shown that the eigenvalue corresponding

to the left eigenvector governing the jump direction, in the limit F ′(u) → 0, tends to λ = 1.

If this limit is reached, then the jump calculations break down, since wj = [0 1 1] results,

but the only q∗ dependence appears in the u∗ equation.

Besides wj, the jump calculations also use the vector fq, corresponding to the vector

of partial derivatives of the fast subsystem vector field with respect to q, given by fq =

[1/c 0 0]T . This quantity, equation (5.42), and equation (3.36) can be substituted into

the following formula

cj := wT
j

(

q∗(ζ−
j )g(bj) − 1

wjfqg(bj)

)

=







c − cλ2

λ
1





























G(bj)/G(aj) − 1

[c − cλ2 λ 1]







1/c
0
0





 [(βq − gα(q))/c]|bj























=

= c







c − cλ2

λ
1







(

G(bj) − G(aj)

(1 − λ2)G(aj)G(bj)

)

, (5.43)

where G(x) = (βq − gα(q))|(u,q,w,z)=x as previously. Note that multiplication of wj by a

nonzero constant does not change this result, as claimed above.

Now, Theorem A.1 of [12] specifies that

q∗(ζ+
j ) = q∗(ζ−

j ) − fT
q cj = q∗(ζ−

j ) − c

(

G(bj) − G(aj)

G(aj)G(bj)

)

. (5.44)
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If we set y∗ = [u∗ w∗ z∗]T , then the theorem also gives y∗(ζ) = −(Dyg(ζ)Dyf(ζ)−1)T q∗(ζ)

for ζ 6= ζj, where Dy denotes differentiation with respect to the fast variables (u, w, z). At

the jump points ζj, y∗(ζ) behaves as a δ-function, in the sense that

∫ ζ+

j

ζ−
j

q̇∗(ζ)dζ = −
∫ ζ+

j

ζ−
j

fT
q y∗(ζ)dη. (5.45)

From equation (5.44), the integral on the left hand side of equation (5.45) evaluates to

−fT
q cj , such that equation (3.38) results from formula (5.43).
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