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Abstract. We reconsider the error in van Cittert deconvolution. We show that without any
extra boundary conditions on higher derivatives of u, away from the boundary the error in van
Cittert deconvolution of differential filters attains the high order of accuracy seen in the periodic
problem. This error result is important for differential filters and approximate deconvolution models
of turbulence.

This is an expanded version, containing more detail, background and supplementary material,
of a report with the same title.
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1. Introduction. We consider the error in van Cittert deconvolution. We show
that without any extra boundary conditions on higher derivatives of u, away from the
boundary the error in van Cittert deconvolution attains the high order of accuracy
seen in the periodic problem. The filtering problem is: given a function u(x) defined
on a domain Ω, compute an approximation u(x) to u(x) which faithfully represents
the behavior of u on scales above some, user selected, filter length (here denoted
ε), and which truncates scales smaller then O(ε). The deconvolution or de-filtering
problem is: given u find an accurate reconstruction of u. When the filter is smoothing
G : L2(Ω) → L2(Ω) by u → u , G is compact and the deconvolution problem is ill-
posed. One early method of deconvolution is the 1934 van Cittert [vC31] algorithm:

A�������	 1.1 (van Cittert approximate deconvolution). Set u0 = u . Fix N
(moderate). For n = 1, 2, ...,N − 1, perform

un+1 = un + {u−Gun}
Define DNu := uN .
R�	��� 1.2. The N th van Cittert approximate deconvolution operator DN is

defined by N steps of Picard/ first order Richardson iteration for solving the operator
equation Gu = u involving a possibly non-invertible operator G, [BB98]:

given u solve Gu = u for u.

by N steps of: u0 = u and unew = uold + {u−Guold}

Since the deconvolution problem is ill-posed, convergence as N →∞ cannot expected.
The relevant question is convergence for fixed N as ε→ 0.

The N th van Cittert deconvolution operator DN is given explicitly by

DNφ :=
N∑

n=0

(I −G)nφ. (1.1)

The van Cittert approximate deconvolution operator corresponding to N = 0, 1, 2 and
their formal orders of accuracy withy the differential filter (1.1) below are:

D0u = u = u+O(ε2),

D1u = 2u− u = u+O(ε4),

D2u = 3u− 3u+ u = u+O(ε6).
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Van Cittert deconvolution thus requires only a few steps of repeated filtering. It is
thus both computationally cheap and easy to program, contributing to its popularity
in various applications, such as turbulence modeling, e.g., [LR12]. For convolution fil-
ters and under periodic boundary conditions, the error in van Cittert can be analyzed
precisely by Fourier methods, e.g., [BIL06], [D04], [DE06]. In other cases there are
significant gaps between the improved accuracy seen in computational practice and
the pessimistic estimates of its global error obtained in analysis.

The goal of this report is to close this gap somewhat. We give error estimates for
the van Cittert deconvolution under nonperiodic boundary conditions and preserving
the boundary conditions. To develop these local and global estimates we must focus
on a specific problem. To begin, we take the filter to be a differential filter (Germano
[Ger86]) specifically the extension of the Pao filter, e.g., [Po00], to a bounded domain.
Let Ω be a bounded, regular, planar domain with smooth boundary and 0 < ε ≤ 1
a small parameter. Given u ∈ H1

0 (Ω) , define Gu = u as the unique solution of the
elliptic-elliptic singular perturbation problem

−ε2△u+ u = u , in Ω, and u = 0 , on ∂Ω. (1.2)

Classical theory, [L73], concludes that

u→ u in L2(Ω) as ε→ 0.

This can be extended to u→ u in H1
0 (Ω) as ε→ 0, [L07]. Further, the shift theorem

implies that u ∈ H1
0 (Ω)∩H

3(Ω). Since traces of △u are thus well defined, −ε2△u+
u = u implies

u = 0 and △u = 0 on ∂Ω.

As an example of the difficulties connected with the global error, consider the case
N = 0 (no deconvolution) and N = 1. The regularity theory (sharp in 1d examples
[L07]) predicts no improvement in the rate of convergence in L2, whpose norm is
denoted || · ||. We prove the following herein which predicts improvement from higher
order deconvolution in negative Sobolev norms and away from the boundary.

T�����	 1.3 (Global and Local Deconvolution Errors). Suppose N > 0 is fixed
and for k large enough that u ∈ Hk(Ω)

⋂
H1
0 (Ω). Then

||u−D0u|| = ||u− u|| ≤ Cε2||u||H2(Ω)

If N = 1 we have in L2 and H−2

||u−D1u|| ≤ Cε2||u||H2(Ω) and ||u−D1u||H−2(Ω) ≤ Cε4||u||H2(Ω)

If N = 1 and additionally △u ∈ H1
0 (Ω)

||u−D1u|| ≤ Cε4||u||H2(Ω)

If △u �= 0 on ∂Ω we have

||u−DNu|| ≤ Cε2||u||H2(Ω)

||u−DNu||H−2N (Ω) ≤ Cε2N+2||u||H2(Ω).
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Let s ≥ 0. Suppose u ∈ H2N+2(Ω)
⋂
H1
0 (Ω). Let

ΩN+1 ⊂ ΩN ⊂ · · · ⊂ Ω1 ⊂ Ω0 ⊂ Ω−1 ≡ Ω

be subdomains with smooth boundaries and for j = N + 1, · · ·, 0 with

Ωj has distance Cjε ln(1/ε) from ∂Ωj−1,

where Cj = C(s,N,Ωj ,Ωj−1). Then there is a C = C(N,Cj) such that

||u−DNu||L2(ΩN+1) ≤ Cε2N+2
[
||u||H2N+2(Ω0) + εs||u||

]

1.1. The case of local averaging filters. If the filter is a local averaging filter
then interior estimates of the above type hold automatically because the calkculation
of φ on Ωj only acceses the values of φ on Ωj−1 . Local averaging filter are vewry
important in finite difference methods. Three examples follow.

Top hat filter. The top hat filter is the un-weighted average defined over a
neighborhood of a given point:

Bδ(x) :={y : |x− y| < ε},

u(x) :=
1

vol(Bε(x))

∫

Bε(x)

u(y)dy.

Thus in 3d this means

u(x) :=
1

4
3πε

3

∫

|x−y|<ε

u(y)dy.

This can be written as a convolution by choosing gδ(x) := ε−3g(x/ε) where

g(x) = 1 , if |x| <
3

4π
,

g(x) = 0 , if |x| ≥
3

4π
.

Discrete filters. In finite difference approximations, ultimately one must filter
discrete velocities defined on a finite difference mesh. On a uniform mesh in 2d with
averaging radius equal to the given meshwidth, ε = △x, using the standard finite
difference compass notation the analog of the top hat filter is

u(P ) :=
u(N) + u(S) + u(E) + u(W ) + u(P )

5

Weighted Compact Discrete Filter, [SAK01a]. There has developed a con-
siderable experience with weighted discrete filters inspired by the needs of difference
methods. On structured meshes, filters can be derived in 1d and extended by taking
tensor products of 1d filters. Generally, the higher order the filter, the more points
involved in the averaging operator and thus the greater the bandwidth on the linear
system that must be solved. Compact filters are a clever idea of Stolz, Adams and
Kleiser [SAK01a]; they attain higher order but only require tridiagonal solves (on
structured meshes). The following 1d weighted discrete filter from [SAK01a] has sec-
ond order accuracy and has proven its value in large eddy simulation. Given values
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ui of the variable u at equi-spaced mesh points xi, a weighting parameter α is chosen
in the range −1/2 ≤ α ≤ +1/2. Then, filtered values are calculated by solving the
tridiagonal system

αui−1 + ui + αui+1 = (
1

2
+ α)

(
ui +

ui−1 + ui+1
2

)
.

The fact that the inverse of a tridiagonal matrix is a full matrix means that local
error estimates for van Cittert deconvolution do ot follow automatically for weighted
compact filters. This extension is an open problem.

2. Proof of the deconvolution error estimate. Since van Cittert deconvo-
lution is mathematically equivalent to a truncation of a geometric (operator) series,
it is quite easy to calculate the deconvolution error for specific choices of filter for
smooth functions. The error in van Cittert deconvolution is thus calculated, [BIL06],
[D04], [DE06], to be

u−DNu = (I −G)N+1u = (−1)N+1ε2N+2△N+1GN+1u (2.1)

= O(ε2N+2) for C∞periodic functions u.

Thus, accuracy of van Cittert in any norm ||| · ||| depends on whether, and for what
values on N,

|||△N+1GN+1(u)||| ≤ C(u) <∞ uniformly in ε.

The proof is based on the error representation (2.1) and two regularity results for
the elliptic-elliptic singular perturbation pronblem. The global regularity result was
proven in [L07], see also [LR12]. The local, interior regularity resuklt is a special case
of Theorem 2.3, page 26 of Navert [N82] (setting the convecting velocity to zero),
see also [SW83]. We shall forst recall these two results, give a preliminary lemma
and them give the proof (which is short with this preparatiuon). Hk(Ω) denotes the
Sobolev space of all functions with derivatives of order ≤ k in L2(Ω). The L2(Ω) norm
is || · || and H1

0 (Ω) := {v ∈ H1 : v = 0 on ∂Ω} . For (1.1) we assume (in particular
implying u = 0 on ∂Ω)

u ∈ Hk(Ω)
⋂
H1
0 (Ω). (2.2)

This condition precludes simple boundary layers in u but does not imply higher deriv-
atives of u are free of layers. From (1.1) it also implies that △u = 0 on ∂Ω.

T�����	 2.1 (Theorem 1.1 in [L07]). Suppose u ∈ H2(Ω)
⋂
H1
0 (Ω). Then there

is a constant C > 0 independent of ε such that

||u||Hl(Ω) ≤ C||u||Hl(Ω) , for l = 0, 1, 2. (2.3)

If u ∈ H4(Ω)
⋂
H1
0 (Ω),△u ∈ H

1
0 (Ω). Then

||u||Hl(Ω) ≤ C||u||Hl(Ω) , for l = 0, 1, 2, 3, 4. (2.4)

In general, suppose u ∈ H2k(Ω)
⋂
H1
0(Ω),△

ju ∈ H1
0 (Ω), j = 1, · · ·, k − 1. Then for

l = 1, · · ·, 2k

||u||Hl(Ω) ≤ C||u||Hl(Ω). (2.5)
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Examples in [L07] show that the estimate ||u||l ≤ C||u||l , being limited to l =
0, 1, 2 is sharp unless higher derivatives of u are zero on ∂Ω.

T�����	 2.2 (Special case of Navert [N82], Theorem 2.3). For u ∈ Hk(Ω) ∩
H1
0 (Ω) consider

−ε2△u+ u = u , in Ω, and u = 0 , on ∂Ω. (2.6)

Let m ≥ 0, s ≥ 0. Let Ω′ ⊂ Ω′′ ⊂ Ω be subdomains with smooth boundaries with
• Ω′ has distance C1ε ln(1/ε) from ∂Ω′′,
• Ω′′ has distance C2ε ln(1/ε) from ∂Ω.

where Ci = Ci(s,m,Ω
′,Ω′′). Then the solution to (1.1) satisfies

||u||Hm(Ω′) ≤ C
(
||u||Hm(Ω′′) + εs||u||

)

First we calculate the global regularity of repeated filtering.
P���������� 2.3. Let u ∈ Hk(Ω)

⋂
H1
0 (Ω). We have for J ≥ 1

||GJu||Hk(Ω) ≤ C||GJ−1u||Hk(Ω), k = 0, 1, · · ·, 2J.

Proof. For n = 1 Theorem 1.1 implies

||u||Hk(Ω) ≤ C||u||Hk(Ω) , for k = 0, 1, 2 and △u = 0 on ∂Ω.

Since △u = 0 on ∂Ω, we repeat. Indeed, G2u = Gu = u so that

||u||Hk(Ω) ≤ C||u||Hk(Ω) , for k = 0, 1, 2, 3, 4 and that

△u = △u = 0 on ∂Ω.

Taking the Laplacian of the equation for u gives

−δ2△2u+△u =△u , in Ω. (2.7)

Now, let x→ ∂Ω and use △u = △u = 0 on ∂Ω. This implies

△2u =△u = u = 0 on ∂Ω

so that for u.

||u||Hk(Ω) ≤ C||u||Hk(Ω) , for k = 0, 1, 2, 3, 4, 5, 6.

The proof continues by induction.
We can now prove the deconvolution error estimate in Theorem 1.1.
Proof. [Proof of Theorem 1.1] We consider △N+1GN+1(u) and use Theorem 1.1

in [L07] repeatedly. For N = 0 this is ||△(−ε2△+ 1)−1u|| :

||u−D0u|| = ||u− u|| = ε2||△(−ε2△+ 1)−1u||.

The first estimate follows since:

||△(−ε2△+ 1)−1u|| = ||△u|| ≤ C||u||2 ≤ C||u||2
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For N = 1 and under △u ∈ H1
0 (Ω) we have similarly that ||u||4 ≤ C||u||4. Thus

||u−D1u|| = ε4||△2u|| ≤ Cε4||u||4 ≤ Cε4||u||4.

For the H−2 estimate we use that △2u =△
(
△u
)
. Step by step, using △u = 0 on ∂Ω

we find ||△2u||−2 ≤ C||△u|| ≤ C||△u|| ≤ C||u||2, completing the proof. The case of
N > 1 follows the same way.

For the interior estimates we use Theorem 2.2 as follows.

||u−DNu||L2(ΩN+1) = ε2N+2||(△N+1GN+1)u||L2(ΩN+1) ≤

≤ Cε2N+2||GN+1u||H2N+2(ΩN+1).

Note that ||φ|| ≤ ||φ|| so that ||Gju|| ≤ ||u|| for all j. Now GN+1u = φ,φ = GNu.
Thus, for any s > 0

||GN+1u||H2N+2(ΩN+1) ≤ C
(
||GNu||H2N+2(ΩN ) + εs||GNu||

)

≤ C
(
||GNu||H2N+2(ΩN ) + εs||u||

)
.

We repeat this argument. Indeed, GNu = φ, φ = GN−1u. Thus, for any s > 0

||GNu||H2N+2(ΩN ) ≤ C
(
||GN−1u||H2N+2(ΩN−1) + εs||u||

)
.

At the last step we have, for any s > 0

||G1u||H2N+2(Ω1) ≤ C
(
||u||H2N+2(Ω0) + εs||u||

)
.

Thus (recalling that N is fixed and C can depend on N) we have

||u−DNu||L2(ΩN+1) ≤ Cε2N+2
[
||u||H2N+2(Ω0) + εs||u||

]

3. Conclusions. The filtering or convolution operator G : u → u is a bounded
map: L2(Ω)→ L2(Ω). If (as for differential filtyers) it is smoothing, its inverse cannot
be bounded due to small divisor problems. Indeed, it is known quite generally that
inversion is not well posed.

T�����	 3.1. Let H be a Hilbert space and G : H → H a compact map. Then,
if H is infinite dimensional

Range(G) �= H.

In other words, G is not invertible as a bounded linear operator.
Thus stable exact deconvolution is not possible and approximate deconvolution

must be used instead. An approximate deconvolution operator DN is an approximate
inverse u→ DN(u) ≈ u which

• is a bounded operator on L2(Ω),
• approximates u in some useful (typically asymptotic) sense, and
• satisfies other conditions necessary for the application at hand.

The error in van Cittert approximate deconvolution in the non periodic case is
of high accuracy, away from boundaries, like that of the periodic case. It is an in-
teresting analytic open question to establish if a simiular result holds for the Stokes
differential filter. It is also an interesting algorithmic open question to alter the van
Cittert procedure near boundaries to obtain a high order accurate reconstruction of
the unknown function up to the boundary.
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