
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve

r (t) = 〈3 cos t, 4t, 3 sin t〉

at the point P =

(
− 3√

2
, 3π,

3√
2

)
.

(b) (5 points) Find curvature of the curve at the point P .

Solution: (a) r′ (t) = 〈−3 sin t, 4, 3 cos t〉, |r′ (t)| =
√

9 + 16 = 5 (+1 point)

T (t) =
r′ (t)

|r′ (t)|
=

〈
−3

5
sin t,

4

5
,

3

5
cos t

〉
(+1 point)

At the point P: t =
3π

4
, sin

3π

4
=

1√
2

=

√
2

2
, cos

3π

4
= − 1√

2
= −
√

2

2
. (+1 point)

Then T

(
3π

4

)
=

〈
− 3

5
√

2
,

4

5
, − 3

5
√

2

〉
=

〈
−3
√

2

10
,

4

5
, −3
√

2

10

〉
(+1 point)

T′ (t) =

〈
−3

5
cos t, 0, −3

5
sin t

〉
, T′ (t) =

3

5
.

N (t) =
T′ (t)

|T′ (t)|
= 〈− cos t, 0, − sin t〉, N

(
3π

4

)
=

〈√
2

2
, 0, −

√
2

2

〉
=

〈
1√
2
, 0, − 1√

2

〉
.

(+2 points)

(b) r′
(

3π

4

)
=

〈
− 3√

2
, 4, − 3√

2

〉
,

r′′ (t) = 〈−3 cos t, 0, −3 sin t〉, r′′
(

3π

4

)
=

〈
3√
2
, 0, − 3√

2

〉
,

r′
(

3π

4

)
× r′′

(
3π

4

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

− 3√
2

4 − 3√
2

3√
2

0 − 3√
2

∣∣∣∣∣∣∣∣∣∣∣∣
=
〈
−6
√

2, −9, −6
√

2
〉
, (+2 points)

∣∣∣∣r′ (3π

4

)
× r′′

(
3π

4

)∣∣∣∣ = 15,

∣∣∣∣r′ (3π

4

)∣∣∣∣3 = 125,

κ=
15

125
=

3

25
. (+2 points)
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2. (10 points) Use LINEAR approximation to approximate the number
√

3.04 + e−0.08 .

Solution: Denote f(x, y) =
√
x+ ey .

Then
∂f

∂x
(x, y) =

1

2
√
x+ ey

,
∂f

∂y
(x, y) =

ey

2
√
x+ ey

. (+2 points)

We are looking for a linear approximation near the point (x0, y0) = (3, 0). (+1 point)

f(3, 0) = 2,
∂f

∂x
(3, 0) =

1

4
,
∂f

∂y
(3, 0) =

1

4
. (+1 point)

Let L(x, y) be the linearization of f(x, y) near (3, 0). Then

f(x, y) ≈ L(x, y) = 2 +
1

4
(x− 3) +

1

4
y. (+3 points)

Therefore,

√
3.04 + e−0.08 = f(3.04,−0.08) ≈ L(3.04,−0.08)

= 2 +
1

4
(3.04− 3) +

1

4
(−0.08) = 2 + 0.01− 0.02

= 1.99

or √
3.04 + e−0.08 ≈ 1.99 (+3 points)
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3. (10 points) Find all critical points of the function f(x, y) = 4x − 3x3 − 2xy2. For each
critical point determine if it is a local maximum, local minimum or a saddle point.

Solution: fx(x, y) = 4− 9x2 − 2y2, fy(x, y) = −4xy. (+1 point)
The equation fy(x, y) = 0 gives two solutions x = 0 or y = 0. (+1 point)

Case x = 0: fx(0, y) = 4 − 2y2 = 0 gives solutions y = −
√

2 or y =
√

2 and points
(0,−

√
2) and (0,

√
2). (+1 point)

Case y = 0: fx(x, 0) = 4− 9x2 = 0 gives solutions x = −2

3
or x =

2

3
and points

(
−2

3
, 0

)
and

(
2

3
, 0

)
. (+1 point)

Critical points are (0,−
√

2), (0,
√

2),

(
−2

3
, 0

)
, and

(
2

3
, 0

)
. (+1 point)

fxx(x, y) = −18x, fxy(x, y) = −4y, fyy(x, y) = −4x. (+1 point)

D(x, y) = fxx(x, y) fyy(x, y)− f 2
xy(x, y) = 72x2 − 16y2 = 8(9x2 − 2y2). (+1 point)

D(0,−
√

2) = D(0,
√

2) = −32 < 0.

Therefore, (0,−
√

2) and (0,
√

2) are saddle points. (+1 point)

D

(
−2

3
, 0

)
= 32 > 0, fxx

(
−2

3
, 0

)
= 12 > 0.

Therefore,

(
−2

3
, 0

)
is a point of a local minimum. (+1 point)

D

(
2

3
, 0

)
= 32 > 0, fxx

(
2

3
, 0

)
= −12 < 0.

Therefore,

(
−2

3
, 0

)
is a point of a local maximum. (+1 point)
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4. (10 points) Find the volume of the solid E bounded by y = x2, x = y2, z = x + y + 5,
and z = 0.

Solution: E = {(x, y, z)| 0 ≤ x ≤ 1, x2 ≤ y ≤
√
x, 0 ≤ z ≤ x+ y+ 5}. (+2 points)

The volume V of the solid E is

V =

∫∫∫
E

dV =

1∫
0

√
x∫

x2

x+y+5∫
0

dz dy dx (+2 points)

=

1∫
0

√
x∫

x2

(x+ y + 5) dy dx

=

1∫
0

[
(x+ 5)y +

y2

2

]√x
x2

dx

=

1∫
0

(
x3/2 + 5x1/2 +

1

2
x− x3 − 5x2 − 1

2
x4
)
dx (+3 points)

=

[
2

5
x5/2 +

10

3
x3/2 +

1

4
x2 − 1

4
x4 − 5

3
x3 − 1

10
x5
]1
0

=
2

5
+

10

3
+

1

4
− 1

4
− 5

3
− 1

10

=
59

30
. (+3 points)
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5. (10 points) Find the y coordinate of the center of mass of a lamina that occupies the
region bounded by y2 = x + 4, x = 0, and y ≥ 0 and has density ρ(x, y) = y. Simplify
your answer as much as possible.

Solution: The region is R = {(x, y)| 0 ≤ y ≤ 2, y2 − 4 ≤ x ≤ 0}. (+2 points)

The mass of the lamina is

m =

∫∫
R

ρ(x, y) dA (+1 point)

=

2∫
0

0∫
y2−4

y dx dy =

2∫
0

(−y3 + 4y) dy

=

[
−1

4
y4 + 2y2

]2
0

= −4 + 8 = 4. (+2 points)

The y coordinate of the center of mass of the lamina is

ȳ =
1

m

∫∫
R

y ρ(x, y) dA (+1 point)

=
1

4

2∫
0

0∫
y2−4

y2 dx dy =
1

4

2∫
0

(−y4 + 4y2) dy (+2 points)

=
1

4

[
−1

5
y5 +

4

3
y3
]2
0

=
1

4

[
−32

5
+

32

3

]

=
16

15
. (+2 points)
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6. (10 points) Evaluate the integral ∫∫
R

ex−2y dA

where R is the parallelogram ABCD with vertices A = (0, 0), B = (4, 1), C = (7, 4), and
D = (3, 3) using the transformation x = 4u + 3v and y = u + 3v. Simplify your answer
as much as possible.

Solution: T : x = 4u+ 3v, y = u+ 3v.

The inverse transformation is T−1 : u =
1

3
(x− y), v =

1

9
(−x+ 4y). (+2 points)

In the uv-plane the region that corresponds to the parallelogram ABCD can be found if
we apply T−1 to its vertices:

A1 = T−1(A) = (0, 0), B1 = T−1(B) = (1, 0), C1 = T−1(C) = (1, 1), D1 = T−1(D) =
(0, 1), which is the square R1 = A1B1C1D1 = {(u, v)| 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. (+2 pts)

The Jacobian of the transformation is

J =

∣∣∣∣ xu xv

yu yv

∣∣∣∣ =

∣∣∣∣ 4 3

1 3

∣∣∣∣ = 12− 3 = 9. (+2 points)

∫∫
R

ex−2y dA =

∫∫
R1

e2u−3v · 9 · dA (+1 point)

= 9

1∫
0

1∫
0

e2u−3v du dv =
9

2

1∫
0

[
e2u−3v

]1
0
dv

=
9

2

1∫
0

(
e2 − 1

)
e−3v dv = −3

2

[
(e2 − 1) e−3v

]1
0

= −3

2

(
(e2 − 1

) (
e−3 − 1

)
=

3

2

(
e2 − 1− e−1 + e−3

)
. (+3 points)
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7. (10 points) Evaluate the line integral∮
C

e2x+y dx+ e−y dy

along the negatively oriented closed curve C, where C is the boundary of the triangle
with the vertices (0, 0), (0, 1), and (1, 0).

Solution: P (x, y) = e2x+y, Q(x, y) = e−y. Hence
∂P

∂y
(x, y) = e2x+y,

∂Q

∂x
(x, y) = 0. (+2 points)

The triangle D bounded by C is D = {(x, y)| 0 ≤ x ≤ 1, 0 ≤ y ≤ −x+ 1}. (+2 points)

Using Green’s Theorem (+1 point) and negative orientation of C we get∮
C

e2x+y dx+ e−y dy = −
∫∫
D

(
0− e2x+y

)
dA (+2 points)

=

1∫
0

−x+1∫
0

e2x+y dy dx =

1∫
0

[
e2x+y

]−x+1

0
dx

=

1∫
0

(
ex+1 − e2x

)
dx =

[
ex+1 − 1

2
e2x
]1
0

= e2 − 1

2
e2 − e+

1

2

=
1

2
e2 − e+

1

2
. (+3 points)
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8. (10 points) Evaluate the integral ∫∫
S

(10− 2z) dS,

where S is the part of the surface z = 5− x2

2
− y2

2
inside the cylinder x2 + y2 = 1.

Solution: z = g(x, y) = 5− x2

2
− y2

2
,

∂g

∂x
(x, y) = −x,

∂g

∂y
(x, y) = −y, (+1 point)

dS =

√
1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dA =
√

1 + x2 + y2 dA. (+2 points)

The domain in the xy-plane is the disk D = {(x, y)|x2 + y2 ≤ 1}. In polar coordinates
x = r cos θ, y = r sin θ, and D = {(r, θ)| 0 ≤ r ≤ 1, 0 ≤ θ < 2π}. (+1 point) Hence∫∫
S

(10− 2z) dS =

∫∫
D

(
10− (10− x2 − y2)

) √
1 + x2 + y2 dA

=

∫∫
D

(
x2 + y2

) √
1 + x2 + y2 dA

=

2π∫
0

1∫
0

r2
√

1 + r2 · r · dr dθ = 2π

1∫
0

r2
√

1 + r2 · r · dr (+3 points)

Substitution: u = 1 + r2 gives r2 = u− 1, du = 2r dr, r dr =
1

2
du. Then

2π

1∫
0

r2
√

1 + r2 · r · dr = 2π

2∫
1

(u− 1)u1/2
1

2
du (+1 point)

= π

2∫
1

(u3/2 − u1/2) du = π

[
2

5
u5/2 − 2

3
u3/2

]2
1

= π

(
8
√

2

5
− 4
√

2

3
− 2

5
+

2

3

)
=

4

15

(√
2 + 1

)
π.

Hence ∫∫
S

(10− 2z) dS =
4

15

(√
2 + 1

)
π. (+2 points)
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9. (10 points) Evaluate the line integral ∮
C

F · dr

for the vector field F(x, y, z) = −y i+x j− z k, where the closed curve C is the boundary
of the triangle with vertices (0, 0, 5), (2, 0, 1), and (0, 3, 2) traced in this order.

Solution: Use Stokes’ Theorem
∮
C

F · dr =
∫∫
S

curlF · dS. (+1 point)

curlF =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

−y x −z

∣∣∣∣∣∣∣∣∣∣
= 2k = 〈 0, 0, 2〉. (+2 points)

S is the triangle with vertices P (0, 0, 5), Q(2, 0, 1), R(0, 3, 2). To find the equation of S

we consider vectors
−→
PQ = 〈2, 0, −4〉 and

−→
PR = 〈0, 3, −3〉. A normal vector n to the

surface S is

n =
−→
PQ×

−→
PR =

∣∣∣∣∣∣∣
i j k

2 0 −4

0 3 −3

∣∣∣∣∣∣∣ = 〈 12, 6, 6〉. (+1 point)

S lies in the plane with the equation 12x+ 6y+ 6(z− 5) = 0 or z = 5− 2x− y. (+1 pt)
Using x and y as parameters we define S by r(x, y) = 〈x, y, 5−2x−y〉, (+1 pt) where
(x, y) ∈ D and D is the triangle with vertices (0, 0), (2, 0), and (0, 3) in the xy-plane.
rx(x, y) = 〈 1, 0, −2〉, ry(x, y) = 〈 0, 1, −1〉.

rx × ry =

∣∣∣∣∣∣∣
i j k

1 0 −2

0 1 −1

∣∣∣∣∣∣∣ = 〈 2, 1, 1〉. (+2 points)

Then∮
C

F · dr =

∫∫
S

curlF · dS =

∫∫
D

〈 0, 0, 2〉 · 〈 2, 1, 1〉 dA = 2

∫∫
D

dA = 2A(D) = 2 · 3 = 6,

where A(D) is the area of the triangle D.

Therefore, ∮
C

F · dr = 6. (+2 points)
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10. (10 points) Evaluate the flux of F(x, y, z) = z2y i+x2y j+(x+y)k over S, where S is the
closed surface consisting of the coordinate planes and the part of the sphere x2+y2+z2 = 4
in the first octant x ≥ 0, y ≥ 0, z ≥ 0, with the normal pointing outward.

Solution: By the Divergence Theorem the flux is∫∫
S

F dS =

∫∫∫
E

divF dV, (+1 point)

where divF = x2 (+1 point) and E is the region bounded by S. In the spherical
coordinates x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ the region is

E = {(ρ, θ, φ)| 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2}. (+2 points) Then

∫∫∫
E

divF dV =

π/2∫
0

π/2∫
0

2∫
0

ρ2 sin2 φ cos2 θ · ρ2 sinφ dρ dφ dθ

=

π/2∫
0

cos2 θ dθ

π/2∫
0

sin3 φ dφ

2∫
0

ρ4 dρ. (+1 point)

π/2∫
0

cos2 θ dθ =

π/2∫
0

cos 2θ + 1

2
dθ =

1

2

[
1

2
sin 2θ + θ

]π/2
0

=
π

4
, (+1 point)

π/2∫
0

sin3 φ dφ =

π/2∫
0

(
1− cos2 φ

)
sinφ dφ = [u = cosφ] =

1∫
0

(
1− u2

)
du =

2

3
, (+2 points)

2∫
0

ρ4 dρ =
32

5
. (+1 point)

Hence

π/2∫
0

cos2 θ dθ

π/2∫
0

sin4 φ dφ

2∫
0

ρ3 dρ =
π

4
· 2

3
· 32

5
=

16

15
π. (+1 point)

Therefore, the flux is
16

15
π.
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