1. (a) (5 points) Find the unit tangent and unit normal vectors \mathbf{T} and \mathbf{N} to the curve

$$
\mathbf{r}(t)=\langle 3 \cos t, 4 t, 3 \sin t\rangle
$$

at the point $P=\left(-\frac{3}{\sqrt{2}}, 3 \pi, \frac{3}{\sqrt{2}}\right)$.
(b) (5 points) Find curvature of the curve at the point P.

Solution: (a) $\mathbf{r}^{\prime}(t)=\langle-3 \sin t, 4,3 \cos t\rangle,\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{9+16}=5$
(+1 point)
$\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\left\langle-\frac{3}{5} \sin t, \frac{4}{5}, \frac{3}{5} \cos t\right\rangle \quad(+\mathbf{1} \mathbf{~ p o i n t})$
At the point $\mathrm{P}: t=\frac{3 \pi}{4}, \sin \frac{3 \pi}{4}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}, \cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2} . \quad(+1$ point $)$
Then $\mathbf{T}\left(\frac{3 \pi}{4}\right)=\left\langle-\frac{3}{5 \sqrt{2}}, \frac{4}{5},-\frac{3}{5 \sqrt{2}}\right\rangle=\left\langle-\frac{3 \sqrt{2}}{10}, \frac{4}{5},-\frac{3 \sqrt{2}}{10}\right\rangle \quad$ ($+\mathbf{1}$ point)
$\mathbf{T}^{\prime}(t)=\left\langle-\frac{3}{5} \cos t, 0,-\frac{3}{5} \sin t\right\rangle, \mathbf{T}^{\prime}(t)=\frac{3}{5}$.
$\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\langle-\cos t, 0,-\sin t\rangle, \mathbf{N}\left(\frac{3 \pi}{4}\right)=\left\langle\frac{\sqrt{2}}{2}, 0,-\frac{\sqrt{2}}{2}\right\rangle=\left\langle\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right\rangle$. (+2 points)
(b) $\mathbf{r}^{\prime}\left(\frac{3 \pi}{4}\right)=\left\langle-\frac{3}{\sqrt{2}}, 4,-\frac{3}{\sqrt{2}}\right\rangle$,
$\mathbf{r}^{\prime \prime}(t)=\langle-3 \cos t, 0,-3 \sin t\rangle, \mathbf{r}^{\prime \prime}\left(\frac{3 \pi}{4}\right)=\left\langle\frac{3}{\sqrt{2}}, 0,-\frac{3}{\sqrt{2}}\right\rangle$,
$\mathbf{r}^{\prime}\left(\frac{3 \pi}{4}\right) \times \mathbf{r}^{\prime \prime}\left(\frac{3 \pi}{4}\right)=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\frac{3}{\sqrt{2}} & 4 & -\frac{3}{\sqrt{2}} \\ \frac{3}{\sqrt{2}} & 0 & -\frac{3}{\sqrt{2}}\end{array}\right|=\langle-6 \sqrt{2},-9,-6 \sqrt{2}\rangle, \quad(+\mathbf{2} \mathbf{p o i n t s})$
$\left|\mathbf{r}^{\prime}\left(\frac{3 \pi}{4}\right) \times \mathbf{r}^{\prime \prime}\left(\frac{3 \pi}{4}\right)\right|=15,\left|\mathbf{r}^{\prime}\left(\frac{3 \pi}{4}\right)\right|^{3}=125$,
$\kappa=\frac{15}{125}=\frac{3}{25} . \quad(+2$ points $)$
2. (10 points) Use LINEAR approximation to approximate the number $\sqrt{3.04+e^{-0.08}}$.

Solution: Denote $f(x, y)=\sqrt{x+e^{y}}$.
Then $\frac{\partial f}{\partial x}(x, y)=\frac{1}{2 \sqrt{x+e^{y}}}, \frac{\partial f}{\partial y}(x, y)=\frac{e^{y}}{2 \sqrt{x+e^{y}}} . \quad(+2$ points $)$
We are looking for a linear approximation near the point $\left(x_{0}, y_{0}\right)=(3,0) . \quad(+\mathbf{1}$ point $)$ $f(3,0)=2, \frac{\partial f}{\partial x}(3,0)=\frac{1}{4}, \frac{\partial f}{\partial y}(3,0)=\frac{1}{4} . \quad(+1$ point $)$

Let $L(x, y)$ be the linearization of $f(x, y)$ near $(3,0)$. Then

$$
f(x, y) \approx L(x, y)=2+\frac{1}{4}(x-3)+\frac{1}{4} y . \quad(+3 \text { points })
$$

Therefore,

$$
\begin{aligned}
\sqrt{3.04+e^{-0.08}} & =f(3.04,-0.08) \approx L(3.04,-0.08) \\
& =2+\frac{1}{4}(3.04-3)+\frac{1}{4}(-0.08)=2+0.01-0.02 \\
& =1.99
\end{aligned}
$$

or

$$
\sqrt{3.04+e^{-0.08}} \approx 1.99 \quad(+3 \text { points })
$$

3. (10 points) Find all critical points of the function $f(x, y)=4 x-3 x^{3}-2 x y^{2}$. For each critical point determine if it is a local maximum, local minimum or a saddle point.

Solution: $\quad f_{x}(x, y)=4-9 x^{2}-2 y^{2}, f_{y}(x, y)=-4 x y . \quad(+1$ point $)$
The equation $f_{y}(x, y)=0$ gives two solutions $x=0$ or $y=0 . \quad(+\mathbf{1}$ point)
Case $x=0: f_{x}(0, y)=4-2 y^{2}=0$ gives solutions $y=-\sqrt{2}$ or $y=\sqrt{2}$ and points $(0,-\sqrt{2})$ and $(0, \sqrt{2}) . \quad(+1$ point $)$
Case $y=0: f_{x}(x, 0)=4-9 x^{2}=0$ gives solutions $x=-\frac{2}{3}$ or $x=\frac{2}{3}$ and points $\left(-\frac{2}{3}, 0\right)$ and $\left(\frac{2}{3}, 0\right) . \quad(+\mathbf{1}$ point $)$
Critical points are $(0,-\sqrt{2}),(0, \sqrt{2}),\left(-\frac{2}{3}, 0\right)$, and $\left(\frac{2}{3}, 0\right) . \quad(+\mathbf{1}$ point $)$
$f_{x x}(x, y)=-18 x, f_{x y}(x, y)=-4 y, f_{y y}(x, y)=-4 x . \quad(+1$ point $)$
$D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)=72 x^{2}-16 y^{2}=8\left(9 x^{2}-2 y^{2}\right) . \quad(+1$ point $)$
$D(0,-\sqrt{2})=D(0, \sqrt{2})=-32<0$.
Therefore, $(0,-\sqrt{2})$ and $(0, \sqrt{2})$ are saddle points. ($+\mathbf{1}$ point)
$D\left(-\frac{2}{3}, 0\right)=32>0, f_{x x}\left(-\frac{2}{3}, 0\right)=12>0$.
Therefore, $\left(-\frac{2}{3}, 0\right)$ is a point of a local minimum. ($+\mathbf{1}$ point)
$D\left(\frac{2}{3}, 0\right)=32>0, f_{x x}\left(\frac{2}{3}, 0\right)=-12<0$.
Therefore, $\left(-\frac{2}{3}, 0\right)$ is a point of a local maximum. (+1 point)
4. (10 points) Find the volume of the solid E bounded by $y=x^{2}, x=y^{2}, z=x+y+5$, and $z=0$.

Solution: $\quad E=\left\{(x, y, z) \mid 0 \leq x \leq 1, x^{2} \leq y \leq \sqrt{x}, 0 \leq z \leq x+y+5\right\} . \quad$ (+2 points)
The volume V of the solid E is

$$
\begin{aligned}
V & =\iint_{E} d V=\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} \int_{0}^{x+y+5} d z d y d x \quad(+\mathbf{2} \text { points }) \\
& =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(x+y+5) d y d x \\
& =\int_{0}^{1}\left[(x+5) y+\frac{y^{2}}{2}\right]_{x^{2}}^{\sqrt{x}} d x \\
& =\int_{0}^{1}\left(x^{3 / 2}+5 x^{1 / 2}+\frac{1}{2} x-x^{3}-5 x^{2}-\frac{1}{2} x^{4}\right) d x \quad(+\mathbf{3} \text { points }) \\
& =\left[\frac{2}{5} x^{5 / 2}+\frac{10}{3} x^{3 / 2}+\frac{1}{4} x^{2}-\frac{1}{4} x^{4}-\frac{5}{3} x^{3}-\frac{1}{10} x^{5}\right]_{0}^{1} \\
& =\frac{2}{5}+\frac{10}{3}+\frac{1}{4}-\frac{1}{4}-\frac{5}{3}-\frac{1}{10} \\
& =\frac{59}{30} \cdot \quad(+\mathbf{3} \text { points }
\end{aligned}
$$

5. (10 points) Find the y coordinate of the center of mass of a lamina that occupies the region bounded by $y^{2}=x+4, x=0$, and $y \geq 0$ and has density $\rho(x, y)=y$. Simplify your answer as much as possible.

Solution: The region is $R=\left\{(x, y) \mid 0 \leq y \leq 2, y^{2}-4 \leq x \leq 0\right\} . \quad(+2$ points)
The mass of the lamina is

$$
\begin{aligned}
m & =\iint_{R} \rho(x, y) d A \quad(+\mathbf{1} \text { point }) \\
& =\int_{0}^{2} \int_{y^{2}-4}^{0} y d x d y=\int_{0}^{2}\left(-y^{3}+4 y\right) d y \\
& =\left[-\frac{1}{4} y^{4}+2 y^{2}\right]_{0}^{2} \\
& =-4+8=4
\end{aligned} \quad(+\mathbf{2} \text { points })
$$

The y coordinate of the center of mass of the lamina is

$$
\begin{aligned}
\bar{y} & =\frac{1}{m} \iint_{R} y \rho(x, y) d A \quad(+\mathbf{1} \text { point }) \\
& =\frac{1}{4} \int_{0}^{2} \int_{y^{2}-4}^{0} y^{2} d x d y=\frac{1}{4} \int_{0}^{2}\left(-y^{4}+4 y^{2}\right) d y \quad(+\mathbf{2} \text { points }) \\
& =\frac{1}{4}\left[-\frac{1}{5} y^{5}+\frac{4}{3} y^{3}\right]_{0}^{2} \\
& =\frac{1}{4}\left[-\frac{32}{5}+\frac{32}{3}\right] \\
& =\frac{16}{15}
\end{aligned}
$$

6. (10 points) Evaluate the integral

$$
\iint_{R} e^{x-2 y} d A
$$

where R is the parallelogram $A B C D$ with vertices $A=(0,0), B=(4,1), C=(7,4)$, and $D=(3,3)$ using the transformation $x=4 u+3 v$ and $y=u+3 v$. Simplify your answer as much as possible.

Solution: $\quad T: \quad x=4 u+3 v, \quad y=u+3 v$.
The inverse transformation is $\quad T^{-1}: \quad u=\frac{1}{3}(x-y), \quad v=\frac{1}{9}(-x+4 y) . \quad(+\mathbf{2}$ points $)$
In the $u v$-plane the region that corresponds to the parallelogram $A B C D$ can be found if we apply T^{-1} to its vertices:
$A_{1}=T^{-1}(A)=(0,0), B_{1}=T^{-1}(B)=(1,0), C_{1}=T^{-1}(C)=(1,1), D_{1}=T^{-1}(D)=$ $(0,1)$, which is the square $R_{1}=A_{1} B_{1} C_{1} D_{1}=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\} . \quad(+\mathbf{2} \mathbf{p t s})$

The Jacobian of the transformation is

$$
\begin{aligned}
J=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{ll}
4 & 3 \\
1 & 3
\end{array}\right|=12-3=9 . \quad(+\mathbf{2} \text { points }) \\
\begin{aligned}
\iint_{R} e^{x-2 y} d A & =\iint_{R_{1}} e^{2 u-3 v} \cdot 9 \cdot d A \quad(+\mathbf{1} \text { point }) \\
& =9 \int_{0}^{1} \int_{0}^{1} e^{2 u-3 v} d u d v=\frac{9}{2} \int_{0}^{1}\left[e^{2 u-3 v}\right]_{0}^{1} d v \\
& =\frac{9}{2} \int_{0}^{1}\left(e^{2}-1\right) e^{-3 v} d v=-\frac{3}{2}\left[\left(e^{2}-1\right) e^{-3 v}\right]_{0}^{1} \\
& =-\frac{3}{2}\left(\left(e^{2}-1\right)\left(e^{-3}-1\right)\right. \\
& =\frac{3}{2}\left(e^{2}-1-e^{-1}+e^{-3}\right) . \quad(+\mathbf{3} \text { points })
\end{aligned}
\end{aligned}
$$

7. (10 points) Evaluate the line integral

$$
\oint_{C} e^{2 x+y} d x+e^{-y} d y
$$

along the negatively oriented closed curve C, where C is the boundary of the triangle with the vertices $(0,0),(0,1)$, and $(1,0)$.

Solution: $\quad P(x, y)=e^{2 x+y}, \quad Q(x, y)=e^{-y}$. Hence $\frac{\partial P}{\partial y}(x, y)=e^{2 x+y}$,

$$
\frac{\partial Q}{\partial x}(x, y)=0 . \quad(+2 \text { points })
$$

The triangle D bounded by C is $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq-x+1\}$. ($+\mathbf{2}$ points) Using Green's Theorem ($+\mathbf{1}$ point) and negative orientation of C we get

$$
\begin{aligned}
\oint_{C} e^{2 x+y} d x+e^{-y} d y & =-\iint_{D}\left(0-e^{2 x+y}\right) d A \quad(+\mathbf{2} \text { points }) \\
& =\int_{0}^{1} \int_{0}^{-x+1} e^{2 x+y} d y d x=\int_{0}^{1}\left[e^{2 x+y}\right]_{0}^{-x+1} d x \\
& =\int_{0}^{1}\left(e^{x+1}-e^{2 x}\right) d x=\left[e^{x+1}-\frac{1}{2} e^{2 x}\right]_{0}^{1} \\
& =e^{2}-\frac{1}{2} e^{2}-e+\frac{1}{2} \\
& =\frac{1}{2} e^{2}-e+\frac{1}{2} . \quad(+\mathbf{3} \text { points })
\end{aligned}
$$

8. (10 points) Evaluate the integral

$$
\iint_{S}(10-2 z) d S
$$

where S is the part of the surface $z=5-\frac{x^{2}}{2}-\frac{y^{2}}{2}$ inside the cylinder $x^{2}+y^{2}=1$.

Solution: $\quad z=g(x, y)=5-\frac{x^{2}}{2}-\frac{y^{2}}{2}, \quad \frac{\partial g}{\partial x}(x, y)=-x, \quad \frac{\partial g}{\partial y}(x, y)=-y, \quad(+1$ point $)$ $d S=\sqrt{1+\left(\frac{\partial g}{\partial x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2}} d A=\sqrt{1+x^{2}+y^{2}} d A . \quad(+\mathbf{2}$ points $)$

The domain in the $x y$-plane is the disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. In polar coordinates $x=r \cos \theta, y=r \sin \theta$, and $D=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta<2 \pi\}$. (+1 point) Hence

$$
\begin{aligned}
\iint_{S}(10-2 z) d S & =\iint_{D}\left(10-\left(10-x^{2}-y^{2}\right)\right) \sqrt{1+x^{2}+y^{2}} d A \\
& =\iint_{D}\left(x^{2}+y^{2}\right) \sqrt{1+x^{2}+y^{2}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \sqrt{1+r^{2}} \cdot r \cdot d r d \theta=2 \pi \int_{0}^{1} r^{2} \sqrt{1+r^{2}} \cdot r \cdot d r \quad(+\mathbf{3} \text { points })
\end{aligned}
$$

Substitution: $u=1+r^{2}$ gives $r^{2}=u-1, d u=2 r d r, r d r=\frac{1}{2} d u$. Then

$$
\begin{aligned}
2 \pi \int_{0}^{1} r^{2} \sqrt{1+r^{2}} \cdot r \cdot d r & =2 \pi \int_{1}^{2}(u-1) u^{1 / 2} \frac{1}{2} d u \quad(+\mathbf{1} \text { point }) \\
& =\pi \int_{1}^{2}\left(u^{3 / 2}-u^{1 / 2}\right) d u=\pi\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]_{1}^{2} \\
& =\pi\left(\frac{8 \sqrt{2}}{5}-\frac{4 \sqrt{2}}{3}-\frac{2}{5}+\frac{2}{3}\right)=\frac{4}{15}(\sqrt{2}+1) \pi
\end{aligned}
$$

Hence

$$
\iint_{S}(10-2 z) d S=\frac{4}{15}(\sqrt{2}+1) \pi . \quad(+2 \text { points })
$$

9. (10 points) Evaluate the line integral

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for the vector field $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}-z \mathbf{k}$, where the closed curve C is the boundary of the triangle with vertices $(0,0,5),(2,0,1)$, and $(0,3,2)$ traced in this order.

Solution: Use Stokes' Theorem $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} . \quad(+\mathbf{1}$ point)

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y & x & -z
\end{array}\right|=2 \mathbf{k}=\langle 0,0,2\rangle . \quad(+\mathbf{2} \text { points })
$$

S is the triangle with vertices $P(0,0,5), Q(2,0,1), R(0,3,2)$. To find the equation of S we consider vectors $\overrightarrow{P Q}=\langle 2,0,-4\rangle$ and $\overrightarrow{P R}=\langle 0,3,-3\rangle$. A normal vector \mathbf{n} to the surface S is

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 0 & -4 \\
0 & 3 & -3
\end{array}\right|=\langle 12,6,6\rangle . \quad(+\mathbf{1} \text { point })
$$

S lies in the plane with the equation $12 x+6 y+6(z-5)=0$ or $z=5-2 x-y$. ($+\mathbf{1} \mathbf{p t}$) Using x and y as parameters we define S by $\mathbf{r}(x, y)=\langle x, y, 5-2 x-y\rangle$, ($+\mathbf{1} \mathbf{p t) \quad \text { where }}$ $(x, y) \in D$ and D is the triangle with vertices $(0,0),(2,0)$, and $(0,3)$ in the $x y$-plane. $\mathbf{r}_{x}(x, y)=\langle 1,0,-2\rangle, \mathbf{r}_{y}(x, y)=\langle 0,1,-1\rangle$.

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & -2 \\
0 & 1 & -1
\end{array}\right|=\langle 2,1,1\rangle . \quad(+\mathbf{2} \text { points })
$$

Then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\langle 0,0,2\rangle \cdot\langle 2,1,1\rangle d A=2 \iint_{D} d A=2 A(D)=2 \cdot 3=6,
$$

where $A(D)$ is the area of the triangle D.
Therefore,

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=6 . \quad(+\mathbf{2} \text { points })
$$

10. (10 points) Evaluate the flux of $\mathbf{F}(x, y, z)=z^{2} y \mathbf{i}+x^{2} y \mathbf{j}+(x+y) \mathbf{k}$ over S, where S is the closed surface consisting of the coordinate planes and the part of the sphere $x^{2}+y^{2}+z^{2}=4$ in the first octant $x \geq 0, y \geq 0, z \geq 0$, with the normal pointing outward.

Solution: By the Divergence Theorem the flux is

$$
\iint_{S} \mathbf{F} d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V, \quad(+\mathbf{1} \text { point })
$$

where $\operatorname{div} \mathbf{F}=x^{2} \quad(+\mathbf{1}$ point) and E is the region bounded by S. In the spherical coordinates $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$ the region is $E=\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 2,0 \leq \theta \leq \pi / 2,0 \leq \phi \leq \pi / 2\}$. (+2 points) Then

$$
\begin{gathered}
\iint_{E} \operatorname{div} \mathbf{F} d V=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{2} \sin ^{2} \phi \cos ^{2} \theta \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
=\int_{0}^{\pi / 2} \cos ^{2} \theta d \theta \int_{0}^{\pi / 2} \sin ^{3} \phi d \phi \int_{0}^{2} \rho^{4} d \rho . \quad(+\mathbf{1} \text { point }) \\
\int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=\int_{0}^{\pi / 2} \frac{\cos 2 \theta+1}{2} d \theta=\frac{1}{2}\left[\frac{1}{2} \sin 2 \theta+\theta\right]_{0}^{\pi / 2}=\frac{\pi}{4}, \quad(+\mathbf{1} \text { point }) \\
\int_{0}^{\pi / 2} \sin ^{3} \phi d \phi=\int_{0}^{\pi / 2}\left(1-\cos ^{2} \phi\right) \sin \phi d \phi=[u=\cos \phi]=\int_{0}^{1}\left(1-u^{2}\right) d u=\frac{2}{3}, \quad(+\mathbf{2} \text { points }) \\
\int_{0}^{2} \rho^{4} d \rho=\frac{32}{5} . \quad(+\mathbf{1} \text { point) }
\end{gathered}
$$

Hence

$$
\int_{0}^{\pi / 2} \cos ^{2} \theta d \theta \int_{0}^{\pi / 2} \sin ^{4} \phi d \phi \int_{0}^{2} \rho^{3} d \rho=\frac{\pi}{4} \cdot \frac{2}{3} \cdot \frac{32}{5}=\frac{16}{15} \pi . \quad(+\mathbf{1} \text { point })
$$

Therefore, the flux is $\frac{16}{15} \pi$.

