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Abstract. We analyze an advection-diffusion-reaction problem with non-homogeneous boundary conditions that models
the chromatography process, a vital stage in bioseparation. We prove stability and error estimates for both constant and
affine adsorption, using the symplectic one-step implicit midpoint method for time discretization and finite elements for spatial
discretization. In addition, we perform the stability analysis for the nonlinear, explicit adsorption in the continuous and semi-
discrete cases. For the nonlinear, explicit adsorption, we also complete the error analysis for the semi-discrete case, and prove
the existence of a solution for the fully discrete case. The numerical tests validate our theoretical results.
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1. Introduction. The global market for biopharmaceuticals is expanding fast and 50% of top 100
drugs will most likely be derived from biotechnology [2,21]. The high demand for biopharmaceuticals is due
to their effectiveness in treating various illnesses such as diabetes, anemia, cancer, etc. [38]. For example,
monoclonal antibodies [41], general products from bioseparation are very useful medications in treating
COVID-19 [1,3,4]. Other key factors driving the growth of the market are the rising investments in research
and development of novel treatments, favorable government regulations, and theh increasing adoption of
biopharmaceuticals by the global population [2]. To maximize the production capacity while minimizing
costs, manufacturers are constantly developing new methods. Integrating new technologies into existing
facilities is more economically viable than the alternative of constructing new biomanufacturing facilities,
due to financial risks. Upstream and downstream processes are typically part of a biomanufacturing facility.
In the upstream process, cells cultured by genetically engineered methods release the desired product into
a solution, and in the downstream process, the product is purified from the solution [19]. The capacity of
production is often limited by downstream purification, usually including chromatography. In the protein
chromatography process, when the solution is pushed through the column, the materials in columns separate
the proteins [51]. The ideal media for the chromatography columns used for bioseparation are resin beds,
monoliths, and membranes [50]. Membrane chromatography [11–13] addresses the low efficiency of resin
chromatography, and uses a porous, absorptive membrane as the packing medium instead of the small resin
beads. The protein binding capacity is crucial in membrane chromatography as it determines the volume
of membrane required for purification. Most absorption mechanisms, such as ion-exchange membranes, lose
the protein binding capacity at relatively low conductivity and often require additional processing stages,
causing lower yield and higher production costs. The recent research in [12] is focused on multimodal
membrane-based chromatography. The development of a modeling framework capable of characterizing the
chromatography process under continuous flow circumstances is critical. Inhere we model this process for
creating a simulation tool for transport in a porous medium by adopting the reactive transport (advection-
diffusion-reaction) problem in [51].

Let Ω be a bounded domain in Rd, where d = 1, 2, or 3, see Figure 1.1, with piecewise smooth boundary
Γ. We partition the boundary into three non-overlapping parts Γ = Γin∪Γn∪Γout, where the inflow boundary
is Γin = {x ∈ Γ : −→n · u(x) < 0}, the outflow boundary is Γout = {x ∈ Γ : −→n · u(x) > 0}, and the boundaries
comprising no-flow hydraulic zone(s) are Γn = Γ\(Γin ∪ Γout). Let u denote the fluid velocity through the
membrane, and −→n denote the unit outward normal to Ω. We assume that u is given, computed by the Darcy
law [25], and satisfying the incompressibility condition ∇·u = 0, and u · −→n (x, t) = 0, x ∈ Γn, t > 0. Let ω
be the total porosity of the membrane (0 ≤ ω ≤ 1), ρs be the density of the membrane, D be the diffusion
tensor that represents the diffusivity of fluid through the membrane, C and q(C) be the concentration in
the liquid and absorbed phases respectively. For a forcing function f ∈ L2(0, T ;L2(Ω)), given velocity u and
initial concentration C0 ∈ L2(Ω), we consider the following initial boundary value problem of finding the
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concentration C(x, t):

(1.1)


ω∂tC + (1− ω)ρs∂tq(C) +∇ · (uC)−∇ · (D∇C) = f, x ∈ Ω, t > 0,
C(x, t) = g, x ∈ Γin, t > 0,
(D∇C) · −→n (x, t) = 0, x ∈ Γn ∪ Γout, t > 0,
C(x, 0) = C0(x), x ∈ Ω.

For the inflow boundary, we keep the concentration fixed [10,25].

Ω

Γin

Γout

Γn Γn

Fig. 1.1: Domain Ω

We consider three cases of isotherms: (i) constant isotherm, q(C) = K, (ii) affine isotherm, q(C) =
K1 +K2C and (iii) nonlinear, explicit isotherm q(C). A typical example of the nonlinear, explicit isotherm

is Langmuir’s isotherm [13, 48], q(C) =
qmaxKeqC
1+KeqC

, where Keq is Langmuir equilibrium constant and qmax

is the maximum binding capacity of the porous medium. The main result of this paper is second-order
accuracy by using the symplectic one-step implicit midpoint method for the time discretization, at the same
computational cost as the Backward Euler method. The accuracy comes in two ways, such as the rate of
convergence is higher and the mass is better conserved when the midpoint method is used. The fully discrete
formulation of the problem (1.1) is given in Section 3. We perform stability analysis and error analysis for
the nonlinear explicit q(C) in Section 4. We also prove the existence of a fully discrete solution, and complete
the stability analysis and error analysis for the constant and affine q(C) in Section 4. The numerical tests
validating these estimates are given in Section 5.

1.1. Previous work. The general advection-diffusion equation has been the subject of extensive math-
ematical study during the past decades [8, 14, 20, 33–35]. The analysis and the numerical computations are
typically more difficult in the presence of reaction terms, especially nonlinear ones [43]. In [51], the author
considered the constant linear and nonlinear adsorptions, and analyzed the problem using the first-order
accurate backward Euler method for the time discretization, and the upwind Petrov-Galerkin (SUPG) finite
element for spatial discretization, with numerical validation for each of the a priori estimates.

2. Notation and Preliminaries. We denote the L2(Ω) norm and inner product by ∥ · ∥ and, (·, ·)
respectively. We denote the usual Sobolev spaces Wm,p(Ω) with the associated norms ∥ ·∥Wm,p(Ω) and in the

case when p = 2, we denote Wm,2(Ω) = Hm(Ω) = {v ∈ L2(Ω) : ∂αv
∂xα ∈ L2(Ω), |α| ≤ r} where α is a multi-

index, with norm ∥v∥r =
(∑

|α|≤r

∫
Ω

∣∣∣ ∂αv
∂xα

∣∣∣2dΩ)1/2. The function space for the liquid phase concentration

is defined as:

H1
0,Γin

(Ω) := {v : v ∈ H1(Ω) with v = 0 on Γin}.
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We define the space H1/2(Γin) := {g ∈ L2(Γin) : ∥g∥H1/2(Γin) <∞} where

∥g∥H1/2(Γin) = inf
G∈H1(Ω)

G

∣∣
Γin=g

∥G∥H1(Ω).

The Bochner space [5] norms are

∥C∥L2(0,T ;X) =

(∫ T

0

∥C(·, t)∥2Xdt

) 1
2

, ∥C∥L∞(0,T ;X) = ess sup
0≤t≤T

∥C(·, t)∥X .

We also define the discrete Lp-norms with p = 2 or ∞

∥C∥L2(0,T,X) =
(
∆t

N∑
n=0

∥Cn∥2X
)
, ∥C∥L∞(0,T,X) = max

0≤n≤N
∥Cn∥X .

For the Finite Element approximation, we consider a regular triangulation of Ω, Th = {A} with Ω =
⋃

A∈Th
A.

We choose a finite dimensional subspace Xh ⊂ H1(Ω) and define

Xh
0,Γin

= {vh ∈ Xh : vh = 0 on Γin}

with Ω a polyhedron, Xh
0,Γin

⊂ H1
0,Γin

(Ω). Let X∗ be the dual space of Xh
0,Γin

, with norm ∥f∥∗ =

supv∈Xh
0,Γin

(f,v)
∥∇v∥ . We denote Xh

Γin
as the restriction of functions in Xh to the boundary Γin and define

Xh
0 = {vh ∈ Xh : vh = 0 on ∂Ω} with Ω a polyhedron, Xh

0 ⊂ H1
0 (Ω). Throughout, K will denote a constant

taking different values in different instances. We assume that there exists a k ≥ 1 such that Xh possesses
the approximation property,

inf
Ch∈Xh

∥C − Ch∥s ≤ Khr−s∥C∥r, for s = 0, 1 and 1 ≤ r ≤ k + 1.(2.1)

For example, (2.1) holds if Xh consists of piecewise polynomials of degree ≤ k. We assume that a similar
approximation holds on Xh

0 . In particular, if C ∈ Hr(Ω) ∩H1
0 (Ω), we will use

inf
Ch∈Xh

0

∥C − Ch∥1 ≤ Khr−1∥C∥r.(2.2)

We further assume that the space Xh
Γin

possesses the approximation property

inf
Ch∈Xh

Γin

∥C − Ch∥0,Γin ≤ Khr−1/2∥C∥r−1/2,Γin
.(2.3)

Lemma 2.1. For all v ∈ H1
0,Γin

(Ω), there exists a constant K̃PF such that

∥v∥1 ≤ K̃PF ∥∇v∥.

Proof. This is the direct consequence of the Poincaré inequality that holds for v ∈ H1
0,Γin

(Ω) [27].

Lemma 2.2. (See [36, p.154]) Let P and P1 be the orthogonal projections with respect to the L2 inner
product (u, v) and H1 inner product (∇u,∇v), respectively. Then, for any w ∈ X,

∇PXhw = P1
∇Xh∇w.

Lemma 2.3. Given g ∈ Hr−1/2(Γin) for r ≥ 1, let Πhg denote the Xh
Γin

-interpolant of g. Then, if Xh

satisfies the approximation properties (2.1)-(2.3),

inf
Ĉh∈Xh

Ĉh|Γin
=Πhg

∥C − Ĉh∥1 ≤ Khr−1∥C∥r.(2.4)
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Proof. This proof follows the proof of [29, Lemma 4],given here for the reader’s convenience. Let ΠhC
denote Xh-interpolant of C and Πhg denote Xh

Γin
- interpolant of g. Then, for Ĉh|Γin = Πhg, we write the

triangle inequality

(2.5) ∥C − Ĉh∥1 ≤ ∥C −ΠhC∥1 + ∥Ĉh −ΠhC∥1.

From the interpolation theory [15] we get

(2.6) ∥C −ΠhC∥1 ≤ Khr−1∥C∥r.

We may choose Ĉh so that it has the same value at all interior nodes as does ΠhC. Since Ĉh|Γin = Πhg and

(ΠhC)
∣∣∣
Γin

= Πhg, we obtain (Ĉh −ΠhC) = 0, which concludes the argument.

2.1. Assumptions and preliminary results. We use the following subset of assumptions considered
in [51]:

(F1) ω and ρs are constants in time and space [25].
(F2) u is nonzero and bounded in L∞ norm [18,44].
(F3) D(x) = [dij ]i,j=1,2,··· ,n is symmetric positive definite and ∥D∥∞ ≤ β1, | ∂

∂xi
dij | ≤ β2, for all i, j

[7, 18,25,44].
(F4) There exists a unique solution C ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) [44].
(F5) q = q(C) ∈ C1 is an explicit, Lipschitz continuous function of C, q(0) = 0, q(C) > 0 for C > 0 and

q(C) is strictly increasing. Moreover, we assume that q′(C) ≥ κ1 > 0 ∀C ≥ 0 [9, 24,25,42–44].
(F6) The rate of increase in adsorption is Lipschitz continuous and bounded above so that dq

dC = q′(C) ≤
κ2 [25].

(F7) The second derivative of the adsorption, q′′(C), is Lipschitz continuous and bounded.

Remark 2.4. In our analysis, we drop the assumption “C(x, t) is nondecreasing in time at every x and
C(x, t) = 0 on Γin” stated in [51]. Instead, we considered the non-homogeneous boundary condition at the
inflow boundary.

In [9, 24, 25, 44, 51], another assumption on the continuous and the discrete solution was imposed, namely
that “C is non-negative”. Using a maximum principle argument, we now prove that the continuous solution
is positive and bounded above for all (x, t) ∈ Ω× (0, T ).

Proposition 2.5. Assuming no forcing term f = 0 and the positivity of the initial condition 0 < C0(x),
we have that

0 < C(x, t) ≤ max
x∈Ω

{C(x, 0), g(x)} for all (x, t) ∈ Ω× [0, T ).

Proof. From the incompressibility condition we have

∇ · (uC) = (∇ · u)C + u ·∇C = u ·∇C,

If we rewrite the adsorption term as

∂q

∂t
=

∂q

∂C

∂C

∂t
= q′(C)

∂C

∂t
,

then the equation (1.1) becomes

(2.7) (ω + (1− ω)ρsq
′(C))∂tC + u ·∇C −∇ · (D∇C) = f, x ∈ Ω, t > 0.

Since q′(C) > 0 by assumption (F5), we can divide (2.7) by (ω + (1 − ω)ρsq
′(C)). Hence, assuming f = 0,

(2.7) writes,

− ∂tC +

n∑
i,j=1

((ω + (1− ω)ρsq
′(C))−1Dij)

∂2C

∂xi∂xj
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+

n∑
j=1

(
(ω + (1− ω)ρsq

′(C))−1
(∂Dij

∂xi
− uj

)) ∂C
∂xj

= 0.

Suppose the claim in the proposition is false. Then there is a y ∈ Ω̄ and T > 0 such that C(y, T ) = 0 and
C(x, t) > 0 for (x, t) ∈ Ω̄ × [0, T ). Therefore, by the Maximum Principle [40, pages 173-174], the maximum
of C(x, t) is on the boundary and (D∇C) · −→n (x, t) < 0. This contradicts the boundary condition in (1.1),
which concludes the argument.

3. Variational Formulation. Let P be the orthogonal projection on H1(Ω) with respect to the L2

inner product (u, v). The standard Galerkin variational formulation for the transport problem (1.1) is: Find

C ∈ H1(Ω) such that C
∣∣∣
Γin

= g and

(
∂

∂t
(ωC + (1− ω)ρsP(q(C))), v) + (u ·∇C, v)+(D∇C,∇v) = (f, v), ∀ v ∈ H1

0,Γin
(Ω).(3.1)

Next, we write a finite element approximation for (1.1).

3.1. Semi-Discrete in Space Approximation. Let Ph be the orthogonal projection on Xh(Ω) with
respect to the L2 inner product (u, v), and gh = Πhg an interpolant of g. Then we obtain the following

semi-discrete in-space formulation: Find Ch ∈ Xh such that Ch

∣∣∣
Γin

= gh and ∀ vh ∈ Xh
0,Γin

(Ω),

(
∂

∂t
(ωCh + (1− ω)ρsPh(q(Ch))), vh) + (u ·∇Ch, vh)+(D∇Ch,∇vh) = (f, vh).(3.2)

3.2. Fully-discrete approximation. We partition the time interval as t0 = 0 < t1 < t2 < · · · < tN =
T . Let ∆t = tn+1 − tn be the uniform time step size, tn = n∆t, tn+1/2 = tn+tn+1

2 , and fn(x) = f(x, tn). We
also denote by Cn

h (x) the Finite Element approximation to C(x, tn).
For time discretization of (3.2) we use the refactorization of the midpoint method [17]: Given Cn

h ∈ Xh,

find Cn+1
h ∈ Xh such that Cn+1

h

∣∣∣
Γin

= gh satisfying

Step 1: Backward Euler method approximating the (3.2) on time interval [tn, tn+1/2], ∀ vh ∈ Xh
0,Γin

(Ω),

((ω + (1− ω)ρs)
q(C

n+1/2
h )− q(Cn

h )

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh)(3.3)

= (fn+1/2, vh).

Step 2: Forward Euler method on time interval [tn+1/2, tn+1], ∀ vh ∈ Xh
0,Γin

(Ω)

((ω + (1− ω)ρs)
q(Cn+1

h )− q(C
n+1/2
h )

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh) + (D∇C

n+1/2
h ,∇vh)(3.4)

= (fn+1/2, vh).

Remark 3.1. Step 2 is equivalent to a linear extrapolation Cn+1
h = 2C

n+1/2
h − Cn

h .

3.3. Time-integrated finite element formulation. For the error analysis of the case of a nonlinear,
explicit adsorption, we use a time-integrated version of the transport equation introduced in [39] and applied
in different formulations [6, 44, 52]. To develop the time-integrated finite element discretization, we rewrite
(1.1) by integrating in time to obtain

(3.5) ωC + (1− ω)ρsq(C) +

∫ t

0

u ·∇Cdt′ −∇ ·
∫ t

0

D∇Cdt′ =

∫ t

0

fdt′ + ωC0 + (1− ω)q(C0).
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Testing (3.5) by v ∈ H1
0,Γin

(Ω) we get,

(3.6)

(ωC, v) + ((1− ω)ρsq(C), v) + (

∫ t

0

u ·∇Cdt′, v)− (∇ ·
∫ t

0

D∇Cdt′, v)

= (

∫ t

0

fdt′, v) + (ωC0, v) + ((1− ω)q(C0), v).

Then the semi-discrete in space variational formulation is: Find Ch ∈ Xh such that Ch

∣∣
Γin

= gh and

(ωCh, vh) + ((1− ω)ρsq(Ch), vh) + (

∫ t

0

u ·∇Chdt
′, vh)− (∇ ·

∫ t

0

D∇Chdt
′, vh)(3.7)

= (

∫ t

0

fdt′, vh) + (ωC0, vh) + ((1− ω)q(C0), vh), ∀vh ∈ Xh
0,Γin

(Ω).

Next, the fully discrete variational formulation using the midpoint time discretization can be written as:
Given Cn

h ∈ Xh, find Cn+1
h ∈ Xh such that Cn+1

h

∣∣
Γin

= gh and

(ωCN+1
h , vh) + ((1− ω)ρsq(C

N+1
h ), vh) + (

N∑
n=0

u ·∇C
n+1/2
h , vh)− (∇ ·

N∑
n=0

D∇C
n+1/2
h , vh)(3.8)

= (

N∑
n=0

fn+1/2, vh) + (ωC0, vh) + ((1− ω)q(C0), vh), ∀vh ∈ Xh
0,Γin

(Ω).

4. Time-Dependent Analysis. In this section, we first construct Ĉ, a continuous extension of the
Dirichlet data g inside the domain Ω, to deal with the non-homogeneous boundary condition. Then we
perform the stability and error analysis for the time-dependent problem.

4.1. Construction of Ĉ. Denote Ĉ as the solution of the following elliptic problem with nonhomoge-
neous mixed boundary conditions:

−∇ · (D∇Ĉ) + Ĉ = 0, x ∈ Ω,(4.1)

Ĉ = g, if x ∈ Γin,

(D∇Ĉ) · −→n = 0, if x ∈ Γn ∪ Γout.

Lemma 4.1. For every f ∈ L2(Ω) and every g ∈ H1/2(Γin), there exists a unique solution Ĉ ∈ H2(Ω)
of (4.1) under the compatibility condition D∇g · −→n = 0 if x ∈ Γin ∩ Γn such that

∥Ĉ∥2 ≤ 4(Kβ1)
2∥g∥2L2(Γin)

, ∥∇Ĉ∥2 ≤ 2(Kβ1)
2

λ
∥g∥2L2(Γin)

.(4.2)

Proof. The existence and uniqueness proof for the more general case can be found in [31, Theorem
2.4.2.7].

Lemma 4.2. Let the domain Ω be a convex polyhedral. Given gh ∈ Xh
Γin

, there exists a Ĉh ∈ Xh such

that Ĉh|Γ− = gh and ∥Ĉh∥H1(Ω) ≤ K∥gh∥H1/2(Γ−).

Proof. When Ω is two-dimensional, we use a similar technique to [32]. Under the compatibility condition
D∇gh · −→n = 0, when x ∈ Γin ∩ Γn, let Ĉ ∈ H1(Ω) be the solution of

−∇ · (D∇Ĉ) + Ĉ = 0, x ∈ Ω,(4.3)

Ĉ = gh, when x ∈ Γin,

(D∇Ĉ) · −→n = 0, if x ∈ Γn ∪ Γout.
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Since Xh is assumed to be a continuous finite element subspace, we see that gh is continuous and piecewise
smooth along the boundary Γin, so that gh ∈ H1/2+ϵ(Γin) for 0 < ϵ ≤ 1

2 . Thus, by elliptic regularity, we

derive that Ĉ ∈ H1+ϵ(Ω) and ∥Ĉ∥1+ϵ ≤ K∥gh∥1/2+ϵ,Γin
for 0 < ϵ ≤ 1

2 . Let Ĉ
h := ΠhĈ be the Xh-interpolant

of Ĉ so that Ĉh|Γin
= gh. Then, we have the estimates ∥Ĉ − ΠhĈ∥1 ≤ Khϵ∥Ĉ∥1+ϵ which can be proven as

in, e.g., [26]. Thus, we get

∥Ĉh∥1 = ∥ΠhĈ∥1 ≤ ∥Ĉ −ΠhĈ∥1 + ∥Ĉ∥1 ≤ K(hϵ∥Ĉ∥1+ε + ∥Ĉ∥1) ≤ K∥gh∥1/2,Γin
,

where in the last step we used an inverse assumption on Xh
Γin

: there exists a constant K, independent of h,

ph such that

∥ph∥s,Γin ≤ Kht−s∥ph∥t,Γin
, ∀ph ∈ Xh

Γin
, 0 ≤ t ≤ s ≤ 1.

Since the usual interpolant used in the two-dimensional case is not defined in three dimensions for Hr(Ω)-
functions, r ≤ 3

2 , we use the Scott-Zhang interpolant [23] when Ω is three-dimensional. The Scott-Zhang
interpolant is well-defined for any function in H1(Ω) [46].

Next, we start with the numerical analysis for the nonlinear, explicit isotherm.

4.2. Nonlinear, Explicit Isotherm. We consider the variational formulation (3.1), the semi-discrete
in-space formulation (3.2), and the fully discrete formulation given in Subsection 3.2. First, we show a total
mass balance balance relation for this nonlinear explicit isotherm. Unlike the [51], we dropped the assumption
“C(x, t) is nondecreasing in time at every x” and considered non-homogeneous boundary conditions at inflow
boundary. We denote the antiderivative of the isotherm by Q(α) =

∫ α

0
q(s)ds, and

E(t) = 3ω

4

∫ t

0

∥D1/2∇C − 8

3
D−1/2Ĉu∥2 dr + 3ω

4

∫ t

0

∥D1/2∇C − 8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

4

∫ t

0

∥D1/2∇C − 8

3
D−1/2∇Ĉ∥2 dr + 3ω

4

∫ t

0

∥D1/2∇C − 8(1− ω)ρsq
′(Ĉ)

3ω
D−1/2∇Ĉ∥2 dr

+ ∥ωC(t) + (1− ω)ρsq(C(t))− 2(ωĈ + (1− ω)ρsq(Ĉ))∥2,

also

B(t) = 3ω

4

∫ t

0

∥8
3
D−1/2Ĉu∥2 dr + 3ω

4

∫ t

0

∥8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 dr + 3ω

4

∫ t

0

∥8
3
D−1/2∇Ĉ∥2 dr

+
3ω

4

∫ t

0

∥8(1− ω)ρsq
′(Ĉ)

3ω
D−1/2∇Ĉ∥2 dr + ∥ωC(0) + (1− ω)ρsq(C(0))− 2(ωĈ + (1− ω)ρsq(Ĉ))∥2.

Theorem 4.3. Assume that (F1)-(F6) are satisfied, f ∈ L2(0, T ;L2(Ω)), the variational problem (3.1)
has a solution C ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)), and let Ĉ be solution of (4.1). Then the following
total mass balance relation holds:

∥ωC(t) + (1− ω)ρsq(C(t))∥2 + ω

∫ t

0

∥D1/2∇C(r)∥2 dr + 4(1− ω)ρs

∫ t

0

∫
Ω

q′(C(r))(D1/2∇C(r))2 dΩ dr

+ 4(1− ω)ρs

∫ t

0

(∫
Γout

Q(C(r))(u · −→n )ds
)
dr + 2ω

∫ t

0

(∫
Γout

C2(u · −→n )ds
)
dr + E(t)

(4.4)

= ∥ωC0 + (1− ω)ρsq(C0)∥2 + 4

∫ t

0

(f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))) dr

− 2ω

∫ t

0

(∫
Γin

g2(u · −→n )ds
)
dr − 4(1− ω)ρs

∫ t

0

(∫
Γin

Q(g)(u · −→n )ds
)
dr + B(t).
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Proof. Let Ĉ ∈ H1(Ω) such that Ĉ
∣∣∣
Γin

= g. We test (4.1) with v = (ωC + (1− ω)ρsq(C))− (ωĈ + (1−

ω)ρsq(Ĉ)) ∈ H1
0,Γin

(Ω). By using the divergence theorem and the boundary conditions, we get

(u ·∇C,ωC + (1− ω)ρsq(C)) =
ω

2

∫
Γin

g2(u · −→n )ds+
ω

2

∫
Γout

C2(u · −→n )ds

+ (1− ω)ρs

∫
Γin

Q(g)(u · −→n )ds+ (1− ω)ρs

∫
Γout

Q(C)(u · −→n )ds,(4.5)

and

ω(D∇C,∇C) + (1− ω)ρs(q
′(C)D∇C,∇C) = ω(D1/2∇C,D1/2∇C) + (1− ω)ρs(q

′(C)D1/2∇C,D1/2∇C)

= ω∥D1/2∇C∥2 + (1− ω)ρs

∫
Ω

q′(C)(D1/2∇C)2 dΩ.

Next, we move the terms involving Ĉ to the right-hand side terms, and express them as follows

(u ·∇C,ωĈ) =
3ω

8
(D1/2∇C,

8

3
D−1/2Ĉu)

=
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8
3
D−1/2Ĉu∥2 − 3ω

16
∥D1/2∇C − 8

3
D−1/2Ĉu∥2,

and

(u ·∇C, (1− ω)ρsq(Ĉ))

=
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 − 3ω

16
∥D1/2∇C − 8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2.

Similarly,

ω(D∇C,∇Ĉ) =
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8
3
D−1/2∇Ĉ∥2 − 3ω

16
∥D1/2∇C − 8

3
D−1/2∇Ĉ∥2,

and

(D∇C, (1− ω)ρsq
′(Ĉ)∇Ĉ)

=
3ω

16
∥D1/2∇C∥2 + 3ω

16
∥8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2 − 3ω

16
∥D1/2∇C − 8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2.

Finally, we express the term involving the time derivative as(
∂

∂t
(ωC + (1− ω)ρsq(C)), ωĈ + (1− ω)ρsq(Ĉ)

)
=

∂

∂t
(ωC + (1− ω)ρsq(C), ωĈ + (1− ω)ρsq(Ĉ)).(4.6)

Combining (4.5)-(4.6), we get

1

2

∂

∂t
∥ωC + (1− ω)ρsq(C)∥2 +

ω

4
∥D1/2∇C∥2 + ω

2

∫
Γout

C2(u · −→n )ds

+ (1− ω)ρs

∫
Γout

Q(C)(u · −→n )ds+ (1− ω)ρs

∫
Ω

q′(C)(D1/2∇C)2 dΩ+
3ω

16
∥D1/2∇C − 8

3
D−1/2Ĉu∥2

+
3ω

16
∥D1/2∇C − 8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 + 3ω

16
∥D1/2∇C − 8

3
D−1/2∇Ĉ∥2

+
3ω

16
∥D1/2∇C − 8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2

= (f, ωC + (1− ω)ρsq(C)− (ωĈ + (1− ω)ρsq(Ĉ))) +
3ω

16
∥8
3
D−1/2Ĉu∥2
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+
3ω

16
∥8ρsq(Ĉ)(1− ω)

3ω
D−1/2u∥2 + 3ω

16
∥8
3
D−1/2∇Ĉ∥2 + 3ω

16
∥8(1− ω)ρsq

′(Ĉ)

3ω
D−1/2∇Ĉ∥2

− ω

2

∫
Γin

g2(u · −→n )ds− (1− ω)ρs

∫
Γin

Q(g)(u · −→n )ds+
∂

∂t
(ωC + (1− ω)ρsq(C), ωĈ + (1− ω)ρsq(Ĉ)).

Integration on [0, t] and the polarized identity yields (4.4).

A direct consequence of Theorem 4.3 is the following stability bound.

Theorem 4.4. Assume that (F1)-(F6) are satisfied and the variational formulation given by (3.1) has a
solution C ∈ L∞(0, T, L2(Ω))∩L2(0, T,H1(Ω)) with f ∈ L2(0, T ;L2(Ω)). Let Ĉ be the continuous extension
of the Dirichlet data g inside the domain Ω and satisfies (4.1). The bounds on ∥Ĉ∥2 and ∥∇Ĉ∥2 are given

in (4.2). Let the antiderivative be A(C) =
∫ C

0
sq′(s)ds. Then we get the following bound:

∥C(t)∥2 + 4

ω

∫
Ω

(1− ω)ρsA(C(t))dΩ+
λ

ω

∫ t

0

∥∇C(r)∥2 dr + 2

ω

∫ t

0

(∫
Γout

((C)2)(u · −→n )ds
)
dr

≤ 4

ω

∫ t

0

∥u∥2∞
λ

∥Ĉ∥2 dr +
(λ
ω

+
4β2

1

λω

)∫ t

0

∥∇Ĉ∥2 dr − 2

ω

∫ t

0

(∫
Γin

((g)2)(u · −→n )ds
)
dr

+ 3∥C(0)∥2 + 8K2
PF

λω

∫ t

0

∥f∥2 dr + 16(ω2 + (1− ω)2ρ2sK
2)

ω2
∥Ĉ∥2 + 4

ω

∫
Ω

(1− ω)ρsA(C(0))dΩ.

Proof. See [47, Theorem 18].

Remark 4.5. We note that in the case of Langmuir’s isotherm, the antiderivative is

A(C(t)) = ln(1 + C) +
1

1 + C
+ constant.

Next, we turn to the stability of the semidiscrete in space approximations in (3.2), and denote:

Qh(α) =

∫ α

0

P(q(s))ds,

Eh(t) =
3ω

4

∫ t

0

∥D1/2∇Ch − 8

3
D−1/2Ĉhu∥2 dr +

3ω

4

∫ t

0

∥D1/2∇Ch − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

4

∫ t

0

∥D1/2∇Ch − 8

3
D−1/2∇Ĉh∥2 dr

+
3ω

4

∫ t

0

∥D1/2∇Ch − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 dr

+ ∥ωCh(t) + (1− ω)ρsP(q(Ch(t)))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,

and

Bh(t) =
3ω

4

∫ t

0

∥8
3
D−1/2Ĉu∥2 dr + 3ω

4

∫ t

0

∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

4

∫ t

0

∥8
3
D−1/2∇Ĉh∥2 dr +

3ω

4

∫ t

0

∥8(1− ω)ρsP1(q′(Ĉ))

3ω
D−1/2∇Ĉh∥2 dr

+ ∥ωC(0) + (1− ω)ρsP(q(C(0)))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2.

Theorem 4.6. Assume that (F1)-(F6) are satisfied, Ch solves the semi-discrete in space Finite Element
formulation with nonlinear adsorption (3.2), f ∈ L2(0, T ;L2(Ω)), Ĉ is the solution of (4.1), Qh(α) ≥ 0, and
P1(q′(Ch)) ≥ 0. The following total mass balance relation holds:

∥ωCh(t) + (1− ω)ρsP(q(Ch(t)))∥2 + ω

∫ t

0

∥D1/2∇Ch(r)∥2 dr
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+ 4(1− ω)ρs

∫ t

0

(∫
Ω

P1(q′(Ch(r)))(D
1/2∇Ch(r))

2 dΩ

)
dr

+ 4(1− ω)ρs

∫ t

0

(∫
Γout

Q(Ch(r))(u · −→n )ds
)
dr + 2ω

∫ t

0

(∫
Γout

C2
h(u · −→n )ds

)
dr + Eh(t)

= ∥ωC(0) + (1− ω)ρsP(q(Ch(0)))∥2 + 4

∫ t

0

(f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh)))) dr

+ Bh(t)− 2ω

∫ t

0

(∫
Γin

g2h(u · −→n )ds
)
dr − 4(1− ω)ρs

∫ t

0

(∫
Γin

Q(gh)(u · −→n )ds
)
dr.

Proof. Let Ĉh ∈ Xh(Ω) such that Ĉh

∣∣∣
Γin

= gh be the interpolant given in Lemma 4.2, and P, P1 be the

orthogonal projections with respect to the L2 and H1 inner products , respectively. Then we test (3.2) with
vh = (ωCh + (1− ω)ρsP(q(Ch)))− (ωĈh + (1− ω)ρsP(q(Ĉh))) ∈ Xh

0,Γin
(Ω) to obtain( ∂

∂t
(ωCh + (1− ω)ρsq(Ch)), ωCh + (1− ω)ρsP(q(Ch))

)
(4.7)

+
(
u ·∇Ch, ωCh + (1− ω)ρsP(q(Ch))

)
+ ω(D∇Ch,∇Ch) + (1− ω)ρs(D∇Ch,P1(q′(Ch)∇Ch))

= (f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+
( ∂
∂t

(ωCh + (1− ω)ρsq(Ch)), (ωĈh + (1− ω)ρsP(q(Ĉh)))
)

+
(
u ·∇C, (ωĈh + (1− ω)ρsP(q(Ĉh)))

)
+ ω(D∇Ch,∇Ĉh) + (1− ω)ρs(D∇Ch,P1(q′(Ĉh)∇Ĉh)).

We rewrite the first term in the left hand side as( ∂
∂t

(ωCh + (1− ω)ρsq(Ch)), ωCh + (1− ω)ρsP(q(Ch))
)
=

1

2

∂

∂t
∥ωCh + (1− ω)ρsP(q(Ch))∥2.(4.8)

Following the technique used in Theorem 4.3 we get

(u ·∇Ch, ωCh + (1− ω)ρsP(q(Ch)))(4.9)

=
ω

2

∫
Γin

g2h(u · −→n )ds+
ω

2

∫
Γout

C2
h(u · −→n )ds

+ (1− ω)ρs

∫
Γin

Qh(gh)(u · −→n )ds+ (1− ω)ρs

∫
Γout

Qh(Ch)(u · −→n )ds,

and

ω(D∇Ch,∇Ch) + (1− ω)ρsP1(q′(Ch)D∇Ch,∇Ch)(4.10)

= ω∥D1/2∇Ch∥2 + (1− ω)ρs

∫
Ω

P1(q′(Ch))(D
1/2∇Ch)

2 dΩ.

Also, the terms on the right-hand side write as

(u ·∇Ch, ωĈh) =
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8
3
D−1/2Ĉhu∥2 −

3ω

16
∥D1/2∇Ch − 8

3
D−1/2Ĉhu∥2,(4.11)

and

(u ·∇Ch, (1− ω)ρsP(q(Ĉh)))

=
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 − 3ω

16
∥D1/2∇Ch − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2.

Moreover,

ω(D∇Ch,∇Ĉh)(4.12)
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=
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8
3
D−1/2∇Ĉh∥2 −

3ω

16
∥D1/2∇Ch − 8

3
D−1/2∇Ĉh∥2,

(D∇Ch, (1− ω)ρsP1(q′(Ĉh))∇Ĉh)(4.13)

=
3ω

16
∥D1/2∇Ch∥2 +

3ω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

− 3ω

16
∥D1/2∇Ch − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2,

and ( ∂
∂t

(ωCh + (1− ω)ρsq(Ch)), ωĈh + (1− ω)ρsP(q(Ĉh))
)

(4.14)

=
∂

∂t
(ωCh + (1− ω)ρsq(Ch), ωĈh + (1− ω)ρsP(q(Ĉh))).

Combining (4.8)-(4.14) and integrating both sides from 0 to t, we obtain

1

2
∥ωCh(t) + (1− ω)ρsP(q(C(t)))∥2 + ω

4

∫ t

0

∥∇Ch(r)∥2 dr +
ω

2

∫ t

0

(∫
Γout

C2
h(u · −→n )ds

)
dr

+ (1− ω)ρs

∫ t

0

∫
Γout

Qh(Ch(r))(u · −→n )ds dr + (1− ω)ρs

∫ t

0

∫
Ω

P1(q′(Ch(r)))(D
1/2∇Ch(r))

2 dΩ dr

+
3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8

3
D−1/2Ĉhu∥2 dr +

3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr

+
3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8

3
D−1/2∇Ĉh∥2 dr

+
3ω

16

∫ t

0

∥D1/2∇Ch(r)−
8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 dr

=

∫ t

0

(f, ωCh + (1− ω)ρsP(q(Ch))− (ωĈh + (1− ω)ρsP(q(Ĉh)))) dr +
3ω

16

∫ t

0

∥8
3
D−1/2Ĉhu∥2 dr

+
3ω

16

∫ t

0

∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 dr + 3ω

16

∫ t

0

∥8
3
D−1/2∇Ĉh∥2 dr

+
3ω

16

∫ t

0

∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 dr +

1

2
∥ωCh(0) + (1− ω)ρsP(q(Ch(0)))∥2

− ω

2

∫ t

0

(∫
Γin

g2h(u · −→n )ds
)
dr − (1− ω)ρs

∫ t

0

(∫
Γin

Qh(gh)(u · −→n )ds
)
dr

+ (ωCh(t) + (1− ω)ρsq(Ch(t)), ωĈh + (1− ω)ρsP(q(Ĉh)))

− (ωCh(0) + (1− ω)ρsq(Ch(0)), ωĈh + (1− ω)ρsP(q(Ĉh))).

Writing the last two terms as

(ωCh(t) + (1− ω)ρsq(Ch(t)), ωĈh + (1− ω)ρsP(q(Ĉh)))

=
1

4
∥(ωCh(t) + (1− ω)ρsq(Ch(t))∥2 +

1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

− 1

4
∥ωCh(t) + (1− ω)ρsq(Ch(t))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,

and

− (ωCh(0) + (1− ω)ρsq(Ch0)), ωĈh + (1− ω)ρsP(q(Ĉh)))

= −1

4
∥(ωCh(0) + (1− ω)ρsq(Ch(0))∥2 −

1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2
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+
1

4
∥ωCh(0) + (1− ω)ρsq(Ch(0))− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,

yields the claimed result.

4.3. Semi-discrete in space error estimate. The following result gives an a priori error estimate of
the semi-discrete in space approximation (3.7) for the case of nonlinear adsorption.

Theorem 4.7. Assume that (F1)-(F7) are satisfied, the variational formulation (3.6) with nonlinear
adsorption has an exact solution C ∈ H1(0, T,Hk+1(Ω)), and Ch solves the semi-discrete in space Finite
Element formulation (3.7). Then for all 1 ≤ r ≤ k + 1 and each T > 0 we have

ω

∫ T

0

∥(C − Ch)∥2dt+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2 ≤ h2r−2

∫ T

0

∥C∥2rdt(4.15)

× exp
(
T +

3T∥u∥2∞∥D−1/2∥2∞
ω

)(
4∥D1/2∥2∞ + 3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sκ
2
2

ω

)
K2.

Proof. First we let v = vh ∈ Xh
0,Γin

⊂ H1
0,Γin

(Ω) in (3.6), and then subtract (3.7) from (3.6) to obtain

0 = (ω(C − Ch), vh) + ((1− ω)ρs(q(C)− q(Ch)), vh) + (

∫ t

0

u ·∇(C − Ch)dt
′, vh)(4.16)

− (∇ ·
∫ t

0

D∇(C − Ch)dt
′, vh), ∀vh ∈ Xh

0,Γin
(Ω).

Choosing vh = Ch − Ĉh = Ch − C + C − Ĉh ∈ Xh
0,Γin

gives

(ω(C − Ch), C − Ch) + ((1− ω)ρs(q(C)− q(Ch)), C − Ch)

+ (

∫ t

0

u ·∇(C − Ch)dt
′, C − Ch) + (

∫ t

0

D∇(C − Ch)dt
′,∇(C − Ch))

= (ω(C − Ch), C − Ĉh) + ((1− ω)ρs(q(C)− q(Ch)), C − Ĉh)

+ (

∫ t

0

u ·∇(C − Ch)dt
′, C − Ĉh) + (

∫ t

0

D∇(C − Ch)dt
′,∇

(
C − Ĉh

)
).

The Cauchy-Schwarz inequality and integration on [0, T ] yields

ω

∫ T

0

∥C − Ch∥2dt+ 2(1− ω)ρs

∫ T

0

∫
Ω

( ∫ 1

0

(q′(θC + (1− θ)Ch))dθ
)
(C − Ch)

2dΩ dt

+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2

≤
(
1 +

3∥u∥2∞∥D−1/2∥2∞
ω

) ∫ T

0

∥
∫ t

0

D1/2∇(C − Ch)dt
′∥2dt+ 4∥D1/2∥2∞

∫ T

0

∥∇
(
C − Ĉh

)
∥2dt

+
(
3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sκ
2
2

ω

) ∫ T

0

∥C − Ĉh∥2dt.

Discarding the second term in the left hand side and using the Gronwall’s inequality gives

ω

∫ T

0

∥(C − Ch)∥2dt+ ∥
∫ T

0

D1/2∇(C − Ch)dt
′∥2

≤ exp
(
T +

3T∥u∥2∞∥D−1/2∥2∞
ω

)
×
(
4∥D1/2∥2∞ ++3ω + 4∥u∥2∞∥D−1/2∥2∞ +

3(1− ω)2ρ2sκ
2
2

ω

)∫ T

0

inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥C − Ĉh∥21dt.

Let boundary term gh be the interpolant of g in Xh
Γin

. Then Lemma 2.3 finally implies (4.15).
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In the following two sections we prove the solvability and the stability of the fully discrete system (3.3)-(3.4),
approximating (1.1) for the nonlinear explicit isotherm.

4.3.1. Existence of the solution to the fully discrete system. By adding and subtracting Ĉh, we
can rewrite the fully discretized (3.3)-(3.4) as follows:
Given Cn

h − Ĉh ∈ Xh
0,Γin

, find Cn+1
h − Ĉh ∈ Xh

0,Γin
such that

(4.17)

(D∇(Cn+1
h − Ĉh),∇vh) = −2

((
ω + (1− ω)ρsq

′(
Cn+1

h − Ĉh + Cn
h + Ĉh

2
)
) (Cn+1

h − Ĉh)− (Cn
h − Ĉh)

∆t
, vh

)
+ 2(fn+1/2, vh)− (u · ∇(Cn+1

h − Ĉh + Cn
h + Ĉh), vh) + (∇ · (D∇(Cn

h + Ĉh)), vh), ∀vh ∈ Xh
0,Γin

.

To simplify the presentation, we drop the subscript h throughout this section. By the Lax-Milgram theorem
[16, corollary 5.8], we have that

∀ l ∈ X∗, there exists an unique solution Ψ ∈ X0,Γin of (D∇Ψ,∇v) = (l, v), ∀v ∈ X0,Γin .

Then, the operator T : X∗ → X0,Γin
defined by T (l) = Ψ is a well-defined linear and continuous operator:

∥T∥ = sup
l∈X∗

∥T (l)∥X0,Γin

∥l∥∗
= sup

l∈X∗

∥∇Ψ∥
∥l∥∗

≤ 1

λ
, since ∥∇Ψ∥ ≤ 1

λ
∥l∥∗.

Next, we define the nonlinear operator N : X0,Γin → X∗ by

N(ψ) = 2fn+
1
2 − 2

(
ω+ (1−ω)ρsq

′(
ψ + Cn + Ĉ

2
)
)ψ − (Cn − Ĉ)

∆t
−u · ∇(ψ+Cn + Ĉ) +∇· (D∇(Cn + Ĉ)),

and the operator F : X0,Γin
→ X0,Γin

by F = T (N(ψ)).

Lemma 4.8. N : X0,Γin → X∗ is a bounded operator

∥N(ψ)∥∗ ≤ ∥u∥∞∥∇ψ∥+ 2ω + 2(1− ω)κ2
∆t

∥ψ∥+ 2ω + 2(1− ω)κ2
∆t

∥Cn − Ĉ∥+ ∥2fn+ 1
2 ∥∗

+ ∥∇ · (D∇(Cn + Ĉ))∥∗ + ∥u∥∞∥∇(Cn + Ĉ)∥.

Proof. The proof follows from (F6), the triangle and Cauchy-Schwarz inequalities.

Lemma 4.9. N : X0,Γin → X∗ is a continuous operator.

Proof. It suffices to show that ∥N(ψ1)−N(ψ2)∥∗ → 0 if ∥∇(ψ1 − ψ2)∥ → 0. Here,

∥N(ψ1)−N(ψ2)∥∗ ≤ 2ω

∆t
∥ψ2 − ψ1∥∗ + ∥u ·∇(ψ2 − ψ1)∥∗

+
2(1− ω)ρs

∆t
∥q′(ψ2 + Cn + Ĉ

2
)(ψ2 − (Cn − Ĉ))− q′(

ψ1 + Cn + Ĉ

2
)(ψ1 − (Cn − Ĉ))∥∗.

Using the Cauchy-Schwarz and Poincaré-Friedrichs inequalities, the Lipschitz continuity of q′ and (F6)-(F7)
we get

∥N(ψ1)−N(ψ2)∥∗

≤
(2ωKPF

∆t
+

2(1− ω)ρsκ2KPF

∆t
+

2(1− ω)ρsKKPF

∆t
∥ψ1 − (Cn − Ĉ)∥

)
∥ψ2 − ψ1∥+ ∥u∥∞∥∇(ψ2 − ψ1)∥

=
2KPF

∆t

(
ω + (1− ω)ρsκ2 + (1− ω)ρsK∥ψ1 − (Cn − Ĉ)∥

)
∥ψ2 − ψ1∥+KPF∥u∥∞∥∇(ψ2 − ψ1)∥,

which concludes the argument.

Lemma 4.10. F : X0,Γin
→ X0,Γin

is a compact map.
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Proof. Since T : X∗ → X0,Γin is a bounded linear operator, we only need to show that N : X0,Γin → X∗

is a compact map. By Lemmas 4.8-4.9 we have that N : X0,Γin → X∗ is a bounded and continuous
operator respectively, and the Rellich-Kondrachov theorem [28, page 272] provides the compact embedding
X0,Γin

↪→ L2. Therefore N : X0,Γin
→ L2 ↪→ X∗ is compact.

ψ ∈ X0,Γin L2(Ω) N(ψ) ∈ X∗

X0,Γin

F
T

To prove the solvability of the problem (4.17), it suffices to show that F has a fixed point, i.e., there exists
ψ = F(ψ) ∈ X0,Γin

.

Theorem 4.11. For any v ∈ X0,Γin and f ∈ X∗, there exists ψ = Cn+1 − Ĉ ∈ X0,Γin solution to (4.17).

Proof. Consider ψα = αF(ψα) in X0,Γin , 0 ≤ α ≤ 1 defined by

ψα = T
(
2αfn+

1
2 − 2α

(
ω + (1− ω)ρsq

′(
ψ + Cn + Ĉ

2
)
)ψ − (Cn − Ĉ)

∆t

− αu · ∇(ψ + Cn + Ĉ) + α∇ · (D∇(Cn + Ĉ))
)
,

which holds if and only if ψα ∈ X0,Γin
satisfies

(D∇ψα,∇v) = −2α
((
ω + (1− ω)ρsq

′(
ψα + Cn + Ĉ

2
)
)ψα − (Cn − Ĉ)

∆t
, v
)

+ 2(αfn+1/2, v)− (αu ·∇
(
ψα + Cn + Ĉ

)
, v)− (αD∇

(
Cn + Ĉ

)
,∇v), ∀v ∈ X0,Γin .

Then by the Leray-Schauder fixed-point theorem [30,45], we only need to prove an a priori bound on ∥∇ψα∥,
independent of α. This follows by setting v = ψα and using the Cauchy-Schwarz and Poincaré-Friedrichs
inequalities

∥∇ψα∥ ≤ 2KPF

λ
∥fn+1/2∥+ KPF

λ
∥u · ∇(Cn + Ĉ)∥+ β1

λ
∥∇(Cn + Ĉ)∥+ 2KPF(ω + (1− ω)ρsκ2)

λ∆t
∥Cn − Ĉ∥,

for 0 ≤ α ≤ 1.

4.3.2. Stability of the solution to the fully discrete system. Inhere we derive an energy-like
bound for (3.3)-(3.4), the fully discrete version of the adsorption equation (1.1) for a nonlinear, explicit
isotherm, using the midpoint method for the time discretization. We recall that at the continuous level,
we proved that the solution C > 0 is positive, and it is bounded by the initial and boundary conditions.
Nevertheless, positivity and at the discrete level, and a discrete the Maximum Principle are hard to obtain,
and usually hold under a CFL condition, i.e., the timestep has to be O(h2) [49]. We use the following
notations: Qh(α) =

∫ α

0
P(q(s))ds,

En
h =

3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2Ĉhu∥2

+
3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2∇Ĉh∥2

14



+
3∆tω

4

N∑
n=0

∥D1/2∇C
n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

+ ∥ωCN+1
h + (1− ω)ρsq(C

N+1
h )− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,

and

Bn
h =

3N∆tω

4
∥8
3
D−1/2Ĉhu∥2 +

3N∆tω

4
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3N∆tω

4
∥8
3
D−1/2∇Ĉh∥2 +

3N∆tω

4
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

+ ∥ωC0
h + (1− ω)ρsq(C

0
h)− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2.

Theorem 4.12. Suppose the assumptions (F1)-(F7) are satisfied so that the fully discrete formulation
has a smooth solution {Cn

h}Nn=0 ∈ L2(0, T ;H1(Ω)). Then for all N > 0,

∥ωCN+1
h + (1− ω)ρsP(q(CN+1

h )∥2 +∆tω

N∑
n=0

∥∇C
n+1/2
h ∥2 + 2∆tω

N∑
n=0

∫
Γout

(C
n+1/2
h )2(u · −→n )ds

+ 4(1− ω)∆tρs

N∑
n=0

∫
Γout

Qh(C
n+1/2
h )(u · −→n )ds

+ 4(1− ω)∆tρs

N∑
n=0

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ+

1

4
En
h

= ∥ωC0
h + (1− ω)ρsP(q(C0

h)∥2 + Bn
h

+ 4∆t

N∑
n=0

(f, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

− 2N∆tω

∫
Γin

g2h(u · −→n )ds− 4(1− ω)N∆tρs

∫
Γin

Qh(gh)(u · −→n )ds.

Proof. Let Ĉh ∈ Xh such that Ĉh

∣∣∣
Γin

= gh. Take

vh = ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))) ∈ Xh

0,Γin
(Ω).

Then (3.3) yields to

(ωC
n+1/2
h + (1− ω)ρsq(C

n+1/2
h )− ωCn

h − (1− ω)ρsq(C
n
h ), ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωC
n+1/2
h + (1− ω)ρsq(C

n+1/2
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
))
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Using polarization identity in the first term, we get,

(4.18)

1

2
(∥ωCn+1/2

h + (1− ω)ρsP(q(C
n+1/2
h ))∥2 + ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn

h + (1− ω)ρsP(q(Cn
h )))∥2)

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωC
n+1/2
h + (1− ω)ρsq(C

n+1/2
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
)).

Next, (3.4) yields to

(ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωC

n+1/2
h − (1− ω)ρsq(C

n+1/2
h )

, ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωC

n+1/2
h − (1− ω)ρsq(C

n+1/2
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
))

Using polarization identity first term, we get

(4.19)

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn+1/2

h + (1− ω)ρsP(q(C
n+1/2
h ))∥2

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn+1

h + (1− ω)ρsP(q(Cn+1
h )))∥2)

+
∆t

2
(u ·∇C

n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

=
∆t

2
(fn+1/2, ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωC

n+1/2
h − (1− ω)ρsq(C

n+1/2
h ), ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(u ·∇C

n+1/2
h , ωĈh + (1− ω)ρsP(q(Ĉh)))

+
∆t

2
(D∇C

n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
))
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Adding (4.18) and (4.19), we get

(4.20)

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn+1

h + (1− ω)ρsP(q(Cn+1
h )))∥2

+ ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn

h + (1− ω)ρsP(q(Cn
h )))∥2)

+ ∆t(u ·∇C
n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+ ∆t(D∇C
n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

= ∆t(fn+1/2, ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(u ·∇C
n+1/2
h , ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(D∇C
n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
)).

Using (3.3) and (3.4), we get,

− ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn+1

h + (1− ω)ρsP(q(Cn+1
h )))∥2

+ ∥ωCn+1/2
h + (1− ω)ρsP((C

n+1/2
h ))− (ωCn

h + (1− ω)ρsP(q(Cn
h )))∥2 = 0

Consequently, we have,

(4.21)

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2)

+ ∆t(u ·∇C
n+1/2
h , ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h )))

+ ∆t(D∇C
n+1/2
h ,∇

(
ωC

n+1/2
h + (1− ω)P(q(C

n+1/2
h ))

)
)

= ∆t(fn+1/2, ωC
n+1/2
h + (1− ω)P(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(u ·∇C
n+1/2
h , (ωĈh + (1− ω)ρsP(q(Ĉh)))

+ ∆t(D∇C
n+1/2
h ,∇

(
(ωĈh + (1− ω)ρsP(q(Ĉh)

)
)).

Doing a similar analysis as in the semidiscrete case, we get,

(4.22)

∆t(u ·∇C
n+1/2
h , ωC

n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h )))

=
∆tω

2

∫
Γin

g2h(u · −→n )ds+
∆tω

2

∫
Γout

(C
n+1/2
h )2(u · −→n )ds

+∆t(1− ω)ρs

∫
Γin

Qh(gh)(u · −→n )ds+∆t(1− ω)ρs

∫
Γout

Qh(C
n+1/2
h )(u · −→n )ds.

Next,

∆tω(D∇C
n+1/2
h ,∇C

n+1/2
h ) + ∆t(1− ω)ρsP1(q′(C

n+1/2
h ))D∇C

n+1/2
h ,∇C

n+1/2
h )

= ∆tω(D1/2∇C
n+1/2
h , D1/2∇C

n+1/2
h )

+ ∆t(1− ω)ρs(P1(q′(C
n+1/2
h ))D1/2∇C

n+1/2
h , D1/2∇C

n+1/2
h )

= ∆tω∥D1/2∇C
n+1/2
h ∥2 +∆t(1− ω)ρs

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ.
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Next, in the right-hand side terms, we get the following equalities,

∆t(u ·∇C
n+1/2
h , ωĈh)(4.23)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8
3
D−1/2Ĉhu∥2 −

3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2Ĉhu∥2,

∆t(u ·∇C
n+1/2
h , (1− ω)ρsP(q(Ĉh)))(4.24)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

− 3∆tω

16
∥D1/2∇C

n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2,

∆tω(D∇C
n+1/2
h ,∇Ĉh)(4.25)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8
3
D−1/2∇Ĉh∥2 −

3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2∇Ĉh∥2,

∆t(D∇C
n+1/2
h , (1− ω)ρsP1(q′(Ĉh))∇Ĉh)(4.26)

=
3∆tω

16
∥D1/2∇C

n+1/2
h ∥2 + 3∆tω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

− 3∆tω

16
∥D1/2∇C

n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2.

Combining (4.22)-(??), we get

1

2
(∥ωCn+1

h + (1− ω)ρsP(q(Cn+1
h ))∥2 − ∥ωCn

h + (1− ω)ρsP(q(Cn
h ))∥2) +

ω∆t

4
∥D1/2∇C

n+1/2
h ∥2

+ (1− ω)∆tρs

∫
Γout

Qh(C
n+1/2
h )(u · −→n )ds+∆t(1− ω)ρs

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ

+
∆tω

2

∫
Γout

(C
n+1/2
h )2(u · −→n )ds+

3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2Ĉhu∥2

+
3∆tω

16
∥D1/2∇C

n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3∆tω

16
∥D1/2∇C

n+1/2
h − 8

3
D−1/2∇Ĉh∥2

+
3∆tω

16
∥D1/2∇C

n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

= ∆t(fn+1/2, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

− ∆tω

2

∫
Γin

g2h(u · −→n )ds+
3∆tω

16
∥8
3
D−1/2Ĉhu∥2

+
3∆tω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2 + 3∆tω

16
∥8
3
D−1/2∇Ĉh∥2

+
3∆tω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 − (1− ω)ρs∆t

∫
Γin

Qh(gh)(u · −→n )ds

+ (ωCn+1
h + (1− ω)ρsq(C

n+1
h )− ωCn

h − (1− ω)ρsq(C
n
h ), (ωĈh + (1− ω)ρsP(q(Ĉh))).

Next, we sum over n = 0 to n = N to obtain

1

2
∥ωCN+1

h + (1− ω)ρsP(q(CN+1
h ))∥2 + ω∆t

4

N∑
n=0

∥D1/2∇C
n+1/2
h ∥2(4.27)

+
∆tω

2

N∑
n=0

(∫
Γout

(C
n+1/2
h )2(u · −→n )ds

)
+∆t(1− ω)ρs

N∑
n=0

(∫
Γout

Qh(C
n+1/2
h (u · −→n )ds

)
18



+∆t(1− ω)ρs

N∑
n=0

(∫
Ω

P1(q′(C
n+1/2
h )(D1/2∇C

n+1/2
h )2 dΩ

)

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2Ĉhu∥2

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8

3
D−1/2∇Ĉh∥2

+
3∆tω

16

N∑
n=0

∥D1/2∇C
n+1/2
h − 8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2

= ∆t

N∑
n=0

(fn+1/2, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

+
3N∆tω

16
∥8
3
D−1/2Ĉhu∥2 +

3N∆tω

16
∥8ρsP(q(Ĉh))(1− ω)

3ω
D−1/2u∥2

+
3N∆tω

16
∥8(1− ω)ρsP1(q′(Ĉh))

3ω
D−1/2∇Ĉh∥2 +

1

2
∥ωC0

h + (1− ω)ρsP(q(C0
h)∥2

− N∆tω

2

∫
Γin

g2h(u · −→n )ds− (1− ω)N∆tρs

∫
Γin

Q(gh)(u · −→n )ds

+ (ωCN+1
h + (1− ω)ρsq(C

N+1
h , ωĈh + (1− ω)ρsP(q(Ĉh)))(4.28)

− (ωC0
h + (1− ω)ρsq(C

0
h, ωĈh + (1− ω)ρsP(q(Ĉh))) +

3N∆tω

16
∥8
3
D−1/2∇Ĉh∥2.

Here,

(ωCN+1
h + (1− ω)ρsq(C

N+1
h ), ωĈh + (1− ω)ρsP(q(Ĉh)))

=
1

2
(ωCN+1

h + (1− ω)ρsq(C
N+1
h ), 2(ωĈh + (1− ω)ρsP(q(Ĉh))))

=
1

4
∥(ωCN+1

h + (1− ω)ρsq(C
N+1
h )∥2 + 1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

− 1

4
∥ωCN+1

h + (1− ω)ρsq(C
N+1
h )− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2,

and

− (ωC0
h + (1− ω)ρsq(C

0
h)), ωĈh + (1− ω)ρsP(q(Ĉh)))

= −1

2
(ωC0

h + (1− ω)ρsq(C
0
h, 2(ωĈh + (1− ω)ρsP(q(Ĉh))))

= −1

4
∥(ωC0

h + (1− ω)ρsq(C
0
h)∥2 −

1

4
∥2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2

+
1

4
∥ωC0

h + (1− ω)ρsq(C
0
h)− 2(ωĈh + (1− ω)ρsP(q(Ĉh)))∥2.

Hence (4.27) becomes

1

4
∥ωCN+1

h + (1− ω)ρsP(q(CN+1
h )∥2 + ∆tω

4

N∑
n=0

∥∇C
n+1/2
h ∥2

+
∆tω

2

N∑
n=0

∫
Γout

(C
n+1/2
h )2(u · −→n )ds+

1

4
En
h + (1− ω)∆tρs

N∑
n=0

∫
Γout

Q(C
n+1/2
h )(u · −→n )ds
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+ (1− ω)∆tρs

N∑
n=0

∫
Ω

P1(q′(C
n+1/2
h ))(D1/2∇C

n+1/2
h )2 dΩ

=
1

4
∥ωC0

h + (1− ω)ρsP(q(C0
h)∥2 +

1

4
Bn
h

+∆t

N∑
n=0

(f, ωC
n+1/2
h + (1− ω)ρsP(q(C

n+1/2
h ))− (ωĈh + (1− ω)ρsP(q(Ĉh))))

− N∆tω

2

∫
Γin

g2h(u · −→n )ds− (1− ω)N∆tρs

∫
Γin

Q(gh)(u · −→n )ds

Simplifying the above inequality, we get the claimed result.

Next, for the constant isotherm, we omit the proofs of Theorem 4.13 and Theorem 4.14 since they
could be retrieved from the nonlinear case by plugging in q(C) = K with K ≥ 0 and dropping the other
assumptions except (F1)-(F6).

4.4. Affine Isotherm. In the case of affine adsorption, q(C) = K1+K2C with K1, K2 ≥ 0. It implies
∂q
∂t = K2

∂C
∂t . Let ω̄ = (ω + (1− ω)ρsK2). Hence, the variational formulation given in (??) simplifies to the

following: Find C ∈ H1(Ω) such that C
∣∣∣
Γin

= g and :

(4.29) (ω̄
∂C

∂t
, v) + (u ·∇C, v) + (D∇C,∇v) = (f, v), for all v ∈ H1

0,Γin
(Ω).

The semi-discrete in space Finite Element formulation with affine adsorption is as follows: Find Ch ∈ Xh

such that Ch

∣∣∣
Γin

= gh and

(4.30) (ω̄
∂Ch

∂t
, vh) + (u ·∇Ch, vh) + (D∇Ch,∇vh) = (f, vh), for all vh ∈ Xh

0,Γin
(Ω).

For the analysis, we recall the refactorization of midpoint method [17] for time discretization, and we get

the following full discretization: Given Cn
h ∈ Xh, find Cn+1

h ∈ Xh such that Cn+1
h

∣∣∣
Γin

= gh satisfying

Step 1: Backward Euler step at the half-integer time step tn+1/2

(4.31)

(ω̄
C

n+1/2
h − Cn

h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh)+(D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), for all vh ∈ Xh

0,Γin
(Ω).

Step 2: Forward Euler step at tn+1

(4.32)

(ω̄
Cn+1

h − C
n+1/2
h

∆t/2
, vh) + (u ·∇C

n+1/2
h , vh)+(D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), for all vh ∈ Xh

0,Γin
(Ω).

The next theorem gives a stability bound in the sense that the solution is bounded in space.

Theorem 4.13. Assume that (F1)-(F6) are satisfied and the variational formulation with affine adsorp-
tion given by (4.29) has a solution C ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) with f ∈ L2(0, T ;L2(Ω)). Let Ĉ
be the continuous extension of the Dirichlet data g inside the domain Ω and satisfies (4.1). The bounds on
∥Ĉ∥2 and ∥∇Ĉ∥2 are given in (4.2). Then we get the following bound:

∥C(t)∥2 + λ

ω̄

∫ t

0

∥∇C(r)∥2 dr + 2

ω̄

∫ t

0

∫
Γout

((C)2)(u · −→n )dsdr ≤ 4

ω̄

∫ t

0

∥u∥2∞
λ

∥Ĉ∥2 dr + 8∥Ĉ∥2

+
(λ
ω̄

+
4β2

1

λω̄

)∫ t

0

∥∇Ĉ∥2 dr − 2

ω̄

∫ t

0

∫
Γin

((g)2)(u · −→n )dsdr + 3∥C0∥2 +
8K2

PF

λω̄

∫ t

0

∥f∥2 dr.

Proof. This follows the same proof as we did in the nonlinear case.
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Next theorem gives a priori error estimate for the case of constant adsorption and semi-discrete in space
where we will use the notation:

K2 = max
{(

2 +
8K2

PF∥u∥2∞ + 8β2
1

λ2

)
K2

1 ,
8K2

PFω
2

λ2
K2

1 ,
4ω

λ

}
.

Theorem 4.14. Assume that (F1)-(F6) are satisfied and the variational formulation with affine adsorp-
tion given by (4.29) has an exact solution C ∈ H1(0, T,Hk+1(Ω)) and Ch solves the semi-discrete in space
Finite Element formulation with affine adsorption given by (4.30). Then for 1 ≤ r ≤ k + 1 there exists a
positive constant K independent of h such that:

∥C − Ch∥L2(0,T ;H1(Ω)) ≤ K
(
hr−1∥C∥L2(0,T ;Hr(Ω)) + hr−1

∥∥∥∂C
∂t

∥∥∥
L2(0,T ;Hr(Ω))

+ ∥(Ch − Ĉh)(0)∥
)
.

Proof. This follows the same proof as we did in the nonlinear case.

Next, we find the energy bound for the discrete version of the adsorption equation (1.1) for affine isotherm
using the midpoint method for the time discretization. At a continuous level, we proved C > 0 and bounded
by initial and boundary conditions. But at a discrete level, the Maximum Principle is very hard to implement,
usually, the timestep has to be O(h2) [49].

Theorem 4.15. Suppose the assumptions (F1)-(F7) are satisfied so that the fully discrete formulation
has a smooth solution {Cn

h}Nn=0 ∈ L2(0, T ;H1(Ω)). Then for all N > 0,

∥CN+1
h ∥2 + 2

ω̄
∆t

N∑
n=0

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+
λ

ω̄
∆t

N∑
n=0

∥∇C
n+1/2
h ∥2

≤ 4N∆t∥u∥2∞ + 8λω

ω̄λ
∥Ĉh∥2 +

2N∆t

ω̄

(∫
Γin

((gh)
2)(−u · −→n )ds

)
+

4N∆tβ2
1 +N∆tλ2

ω̄λ
∥∇Ĉh∥2

+
8K2

PF

ω̄λ
∆t

N∑
n=0

∥fn+1/2∥2 + 3∥C0
h∥2.

Proof. Let Ĉh ∈ Xh such that Ĉh

∣∣∣
Γin

= gh. Take vh = C
n+1/2
h − Ĉh ∈ Xh

0,Γin
(Ω). Then (4.31) yields to

(ω̄(C
n+1/2
h − Cn

h ), C
n+1/2
h ) +

∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h ) +

∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω̄(C

n+1/2
h − Cn

h ), Ĉh) +
∆t

2
(u ·∇C

n+1/2
h , Ĉh) +

∆t

2
(D∇C

n+1/2
h ,∇Ĉh).

Using polarization identity in the first term, we get,
(4.33)

(
ω̄

2
∥Cn+1/2

h ∥2 − ω̄

2
∥Cn

h∥2 +
ω̄

2
∥Cn+1/2

h − Cn
h∥2) +

∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h ) +

∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω̄(C

n+1/2
h − Cn

h ), Ĉh) +
∆t

2
(u ·∇C

n+1/2
h , Ĉh) +

∆t

2
(D∇C

n+1/2
h ,∇Ĉh).

Next, (4.32) yields to

(ω̄(Cn+1
h − C

n+1/2
h ), C

n+1/2
h ) +

∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h ) +

∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω̄(Cn+1

h − C
n+1/2
h ), Ĉh) +

∆t

2
(u ·∇C

n+1/2
h , Ĉh) +

∆t

2
(D∇C

n+1/2
h ,∇Ĉh).

Using polarization identity first term, we get
(4.34)
ω̄

2
(∥Cn+1

h ∥2 − ∥Cn+1/2
h ∥2 − ∥Cn+1

h − C
n+1/2
h ∥2) + ∆t

2
(u ·∇C

n+1/2
h , C

n+1/2
h ) +

∆t

2
(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2
(fn+1/2, C

n+1/2
h − Ĉh) + (ω̄(Cn+1

h − C
n+1/2
h ), Ĉh) +

∆t

2
(u ·∇C

n+1/2
h , Ĉh) +

∆t

2
(D∇C

n+1/2
h ,∇Ĉh).
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Adding (4.33) and (4.34), we get

(4.35)

ω̄

2
(∥Cn+1

h ∥2 − ∥Cn
h∥2 + ∥Cn+1/2

h − Cn
h∥2 − ∥Cn+1

h − C
n+1/2
h ∥2) + ∆t(u ·∇C

n+1/2
h , C

n+1/2
h )

+ ∆t(D∇C
n+1/2
h ,∇C

n+1/2
h ) = ∆t(fn+1/2, C

n+1/2
h − Ĉh) + (ω̄(Cn+1

h − Cn
h ), Ĉh)

+ ∆t(u ·∇C
n+1/2
h , Ĉh) + ∆t(D∇C

n+1/2
h ,∇Ĉh).

Using (4.31) and (4.32), we get,

1

2
∥Cn+1/2

h − Cn
h∥2 −

1

2
∥Cn+1

h − C
n+1/2
h ∥2 = 0.

Consequently, we have,

(4.36)
ω̄

2
(∥Cn+1

h ∥2 − ∥Cn
h∥2) + ∆t(u ·∇C

n+1/2
h , C

n+1/2
h ) + ∆t(D∇C

n+1/2
h ,∇C

n+1/2
h )

= ∆t(fn+1/2, C
n+1/2
h − Ĉh) + (ω̄(Cn+1

h − Cn
h ), Ĉh) + ∆t(u ·∇C

n+1/2
h , Ĉh) + ∆t(D∇C

n+1/2
h ,∇Ĉh).

Doing a similar analysis as in the continuous case, we get,

(u ·∇C
n+1/2
h , C

n+1/2
h ) =

1

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+

1

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
.(4.37)

Next,

(D∇C
n+1/2
h ,∇C

n+1/2
h ) ≥ λ∥∇C

n+1/2
h ∥2.(4.38)

The bounded term on the right side using similar techniques as in continuous case is shown below:

(u ·∇C
n+1/2
h , Ĉh) ≤

λ

4
∥∇C

n+1/2
h ∥2 + ∥u∥2∞

λ
∥Ĉh∥2.(4.39)

(D∇C
n+1/2
h ,∇Ĉh) ≤

λ

4
∥∇C

n+1/2
h ∥2 + β2

1

λ
∥∇Ĉh∥2.(4.40)

(fn+1/2, C
n+1/2
h − Ĉh) ≤

2K2
PF

λ
∥fn+1/2∥2 + λ

4
∥∇C

n+1/2
h ∥2 + λ

4
∥∇Ĉh∥2.(4.41)

Putting (4.37)-(4.41) into (4.36), we get,

(4.42)

ω̄

2
∥Cn+1

h ∥2 − ω̄

2
∥Cn

h∥2 +
∆t

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+

∆tλ

4
∥∇C

n+1/2
h ∥2

≤ ∥u∥2∞∆t

λ
∥Ĉh∥2 −

∆t

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+

∆tβ2
1

λ
∥∇Ĉh∥2

+
2K2

PF∆t

λ
∥fn+1/2∥2 + ∆tλ

4
∥∇Ĉh∥2 + (ω̄(Cn+1

h − Cn
h ), Ĉh).

Next, we sum over n = 0 to n = N to get

(4.43)

ω̄

2
∥CN+1

h ∥2 − ω̄

2
∥C0

h∥2 +
∆t

2

N∑
n=0

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+

∆tλ

4

N∑
n=0

∥∇C
n+1/2
h ∥2

≤ N∥u∥2∞∆t

λ
∥Ĉh∥2 −

N∆t

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+
N∆tβ2

1

λ
∥∇Ĉh∥2

+
2K2

PF∆t

λ

N∑
n=0

∥fn+1/2∥2 + N∆tλ

4
∥∇Ĉh∥2 + (ω̄(CN+1

h − C0
h), Ĉh).
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Here,

(ω̄(CN+1
h − C0

h), Ĉh) ≤
ω̄

4
∥CN+1

h ∥2 + ω̄

4
∥C0

h∥2 + 2ω̄∥Ĉh∥2.

After simplification, we get the desired result.

Remark 4.16. Putting (4.37) into (4.36), we get,

(4.44)

ω̄

2
∥Cn+1

h ∥2 − ω̄

2
∥Cn

h∥2 +
∆t

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+∆t(D∇C

n+1/2
h ,∇C

n+1/2
h )

= −∆t

2

(∫
Γin

((gh)
2)(u · −→n )ds

)
+∆t(fn+1/2, C

n+1/2
h − Ĉh)

+ (ω̄(Cn+1
h − Cn

h ), Ĉh) + ∆t(u ·∇C
n+1/2
h , Ĉh) + ∆t(D∇C

n+1/2
h ,∇Ĉh).

If f = 0 and Ĉh = 0 in (4.44), we get the balance of mass as follows

(4.45)

ω̄

2
(∥Cn+1

h ∥2 − ∥Cn
h∥2) +

∆t

2

(∫
Γout

((C
n+1/2
h )2)(u · −→n )ds

)
+∆t(D∇C

n+1/2
h ,∇C

n+1/2
h )

=
∆t

2

(∫
Γin

((gh)
2)(−u · −→n )ds

)
.

Recall that u · −→n > 0 on Γout and u · −→n < 0 on Γin.

Next theorem gives a priori error estimate for the case of constant adsorption in the fully discrete case where
we will use the notation

K2 = max
{(

2 +
8K2

PF∥u∥2∞ + 8β2
1

λ2

)
K2

2 ,
8K2

PFω̄
2

λ2
K2

2 ,
8K1TK

2
PF

λ2
,
2ω̄

λ

}
.

Theorem 4.17. Suppose the assumptions (F1)-(F7) are satisfied so that the fully discrete formulation
has a smooth solution {Cn

h}Nn=0 ∈ L2(0, T ;H1(Ω)) and the variational formulation with affine adsorption

given by (4.29) has an exact solution C ∈ H1(0, T,Hk+1(Ω)). Let ϕnh = Ĉh − Cn
h . Then for 1 ≤ r ≤ k + 1

and N > 0 there exists a positive constant K such that:

∆t

N+1∑
n=0

∥C(tn+1/2)− Ch(tn+1/2)∥21 ≤ K2
(
h2r−2∆t

N+1∑
n=0

∥C(tn+1/2)∥2r + h2r−2
∥∥∥∂C
∂t

∥∥∥2
L2(0,T ;Hr(Ω))

+ (∆t)4∥Cttt∥2L∞(0,T ;L∞) + ∥ϕ0h∥2
)
.

Proof. Let the approximate solution at time tn+1/2 be C
n+1/2
h . Then by using the midpoint method, we

get, the fully discrete variational formulation as follows:

Given Cn
h ∈ Xh, find Cn+1

h ∈ Xh such that Cn+1
h

∣∣∣
Γin

= gh and satisfying,

(4.46)

(ω̄
Cn+1

h − Cn
h

∆t
, vh) + (u ·∇C

n+1/2
h , vh)+(D∇C

n+1/2
h ,∇vh) = (fn+1/2, vh), for all vh ∈ Xh

0,Γin
(Ω).

Let Ct represent
∂C
∂t . We write the following variational formulation for the exact solution C.

(4.47)

(ω̄
C(tn+1)− C(tn)

∆t
, v) + (u ·∇C(tn+1/2), v) + (D∇C(tn+1/2),∇v) = (fn+1/2, v) + (rn, v), ∀ v ∈ H1

0,Γin
(Ω).

where time discretization error, rn = C(tn+1)−C(tn)
∆t − Ct(tn+1)+Ct(tn)

2 .
Let en = C(tn)−Cn

h and v = vh ∈ Xh
0,Γin

⊂ H1
0,Γin

(Ω) in (4.47) and then subtract (4.46) from (4.47) to get

(4.48) (ω̄
en+1 − en

∆t
, vh) + (u ·∇en+1/2, vh) + (D∇en+1/2,∇vh) = (rn, vh), for all vh ∈ Xh

0,Γin
(Ω).

23



Then for any Ĉh ∈ Xh such that Ĉh

∣∣∣
Γin

= gh, we write that en = C(tn)−Cn
h = C(tn)− Ĉh + Ĉh −Cn

h . Let

ϕnh = Ĉh−Cn
h and ηn = Ĉh−C(tn). Notice that both Cn

h and Ĉh
n
are equal to gh on Γin. Hence ϕnh

∣∣∣
Γin

= 0.

We choose vh = ϕ
n+1/2
h ∈ Xh

0,Γin
. Then (4.48) becomes

(ω̄
ϕn+1
h − ϕnh

∆t
, ϕ

n+1/2
h ) + (u ·∇ϕ

n+1/2
h , ϕ

n+1/2
h ) + (D∇ϕ

n+1/2
h ,∇ϕ

n+1/2
h )

= (ω̄
ηn+1 − ηn

∆t
, ϕ

n+1/2
h ) + (u ·∇ηn+1/2, ϕ

n+1/2
h ) + (D∇ηn+1/2,∇ϕ

n+1/2
h ) + (rn, ϕ

n+1/2
h ).

We obtain lower bounds for the terms on the left and upper bounds for the term on the right of (4.49) by
using the assumptions and Young’s and Cauchy-Schwarz inequalities. We rewrite the first term in (4.49),

(ω̄
ϕn+1
h − ϕnh

∆t
, ϕ

n+1/2
h ) =

ω̄

2∆t
(∥ϕn+1

h ∥2 − ∥ϕnh∥2).(4.49)

Following the same steps in Theorem 4.14, we get the following bounds

(u ·∇ϕ
n+1/2
h , ϕ

n+1/2
h ) ≥ 0.(4.50)

(D∇ϕ
n+1/2
h ,∇ϕ

n+1/2
h ) ≥ λ∥∇ϕ

n+1/2
h ∥2.(4.51)

(u ·∇ηn+1/2, ϕ
n+1/2
h ) ≤ 2K2

PF∥u∥2∞
λ

∥ηn+1/2∥21 +
λ

8
∥∇ϕ

n+1/2
h ∥2.(4.52)

(D∇ηn+1/2,∇ϕ
n+1/2
h ) ≤ 2β2

1

λ
∥ηn+1/2∥21 +

λ

8
∥∇ϕ

n+1/2
h ∥2.(4.53)

Next,

(ω̄
ηn+1 − ηn

∆t
, ϕ

n+1/2
h ) =

( ω̄
∆t

∫ tn+1

tn

ηtdτ, ϕ
n+1/2
h

)
,

≤ 2K2
PFω̄

2

λ∆t2
( ∫ tn+1

tn

∥ηt∥dτ
)2

+
λ

8
∥∇ϕ

n+1/2
h ∥2.

Hence, after applying Cauchy-Schwarz inequality we get,

(ω̄
ηn+1 − ηn

∆t
, ϕ

n+1/2
h ) ≤ 2K2

PFω̄
2

λ∆t2
( ∫ tn+1

tn

∥ηt∥2dτ
)
+
λ

8
∥∇ϕ

n+1/2
h ∥2.(4.54)

Next,

(rn, ϕ
n+1/2
h ) ≤ λ

8
∥∇ϕ

n+1/2
h ∥2 + 2K2

PF

λ
∥rn∥2.(4.55)

Combining (4.49)-(4.55), we get

(4.56)

ω̄

2∆t
(∥ϕn+1

h ∥2 − ∥ϕnh∥2) +
λ

2
∥∇ϕ

n+1/2
h ∥2

≤ 2K2
PF∥u∥2∞∥ηn+1/2∥21

λ
+

2β2
1∥ηn+1/2∥21

λ
+

2K2
PFω̄

2

λ∆t

( ∫ tn+1

tn

∥ηt∥2dτ
)
+

2K2
PF

λ
∥rn∥2.
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Multiplying (4.56) by 2∆t
ω̄ and summing over n = 0 to n = N , we get

(4.57)

∥ϕN+1
h ∥2 + λ

ω̄

N+1∑
n=0

∆t∥∇ϕ
n+1/2
h ∥2 ≤

(4K2
PF∥u∥2∞ + 4β2

1

ω̄λ

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
4K2

PF

λω̄

∫ T

0

∥ηt∥2dt+
4K2

PF

ω̄λ

N+1∑
n=0

∆t∥rn∥2 + ∥ϕ0h∥2.

To bound rn, we use Taylor expansion about tn+1/2. Hence,

N+1∑
n=0

∆t∥rn∥2 ≤ K1

N+1∑
n=0

∆t(∆t2∥Cttt∥L∞(0, T ;L∞))2,

≤ K1N∆t(∆t2∥Cttt∥L∞(0,T ;L∞))
2,

≤ K1T (∆t
2∥Cttt∥L∞(0,T ;L∞))

2.

Therefore, (4.57) implies

∥ϕN+1
h ∥2 + λ

ω̄

N+1∑
n=0

∆t∥∇ϕ
n+1/2
h ∥2 ≤

(4K2
PF∥u∥2∞ + 4β2

1

ω̄λ

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
4K2

PFω̄

λ

∫ T

0

∥ηt∥2dt+
4K1TK

2
PF

ω̄λ
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 + ∥ϕ0h∥2.

Hence, we can write,

N+1∑
n=0

∆t∥∇ϕ
n+1/2
h ∥2 ≤

(4K2
PF∥u∥2∞ + 4β2

1

λ2

)N+1∑
n=0

∆t∥ηn+1/2∥2

+
4K2

PFω̄
2

λ2

∫ T

0

∥ηt∥21dt+
4K1TK

2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
ω̄

λ
∥ϕ0h∥2.

By using the Lemma 2.1, we get

N+1∑
n=0

∆t∥ϕn+1/2
h ∥21 ≤

(4K2
PF∥u∥2∞ + 4β2

1

λ2

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
4K2

PFω̄
2

λ2

∫ T

0

∥ηt∥2dt+
4K1TK

2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
ω̄

λ
∥ϕ0h∥2.

Triangle inequality gives

N+1∑
n=0

∆t∥en+1/2∥21 ≤
N+1∑
n=0

2∆t
(
∥ϕn+1/2

h ∥21 + ∥ηn+1/2∥21
)
.

Thus, we get

N+1∑
n=0

∆t∥en+1/2∥21 ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)N+1∑
n=0

∆t∥ηn+1/2∥21

+
8K2

PFω̄
2

λ2

∫ T

0

∥ηt∥2dt+
8K1TK

2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
2ω̄

λ
∥ϕ0h∥2.

Since Ĉh is arbitrary, we have the following inequality

N+1∑
n=0

∆t∥en+1/2∥21 ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)N+1∑
n=0

∆t inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥Cn+1/2 − Ĉh∥21
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+
8K2

PFω̄
2

λ2

∫ T

0

inf
Ĉh∈Xh

Ĉh|Γin
=gh

∥∥∥∂(C − Ĉh)

∂t

∥∥∥2dt+ 8K1TK
2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
2ω̄

λ
∥ϕ0h∥2.

Let gh be the interpolant of g in Xh
Γin

. Then by using Lemma 2.3, for 1 ≤ r ≤ k + 1 we get,

(4.58)

N+1∑
n=0

∆t∥en+1/2∥21 ≤
(
2 +

8K2
PF∥u∥2∞ + 8β2

1

λ2

)
K2

2h
2r−2

N+1∑
n=0

∆t∥Cn+1/2∥2r

+
8K2

PFω̄
2

λ2
K2

2h
2r−2

∫ T

0

∥∥∥∂C
∂t

∥∥∥2
r
dt+

8K1TK
2
PF

λ2
(∆t2∥Cttt∥L∞(0,T ;L∞))

2 +
2ω̄

λ
∥ϕ0h∥2.

Let

K2 = max
{(

2 +
8K2

PF∥u∥2∞ + 8β2
1

λ2

)
K2

2 ,
8K2

PFω̄
2

λ2
K2

2 ,
8K1TK

2
PF

λ2
,
2ω̄

λ

}
.

Thus (4.58) implies the claim.

5. Numerical Test. In this section, we perform numerical tests to show that the midpoint method
described in Subsection 3.2 gives a second-order convergence rate for the considered PDE model for the
constant, affine, and nonlinear, explicit adsorptions. Since the results are similar, we only show the nonlinear,
explicit adsorption case. For checking the order of convergence, we assume the following: u = (1, 1), D = I,
Ω = [0, 1] × [0, 1], ω = 0.5, Xh = the space of continuous piecewise affine functions, the exact solution is
C(x, y, t) = t2(x3 − 3

2x
2 + 1) cos (π4 y). The true solution determines the body force f , initial condition C0,

and boundary conditions. The norms used in the table are defined as follows,

∥C∥∞,0 := ess sup
0<t<T

∥C(·, t)∥L2(Ω) and ∥C∥0,0 :=

(∫ T

0

∥C(·, t)∥2L2(Ω) dt

)1/2

.

Next, for the plot of the concentration profile in each case, we consider the following: f = 0, g = 1,
T = 3.0, h = 1/128, dt = 1/128, u = (0, 2x(x − 2)), D = I, Ω = [0, 2] × [0, 10], ω = 0.5, Xh =
the space of continuous piecewise affine functions.

5.1. Tests for the case of nonlinear, explicit isotherm. In this subsection, we first check the
convergence rate for the case of nonlinear, explicit isotherm in the first test, and in the second test, we plot
the concentration profile. We also show the comparison of total mass after each test. In this test problem,
we use Langmuir’s isotherm with qmax = Keq = 1 where q(C) =

qmaxKeqC
1+KeqC

= C
1+C . We simplify the problem

formulation to a single (nonlinear) transport equation in one unknown C using

∂q

∂t
=

∂q

∂C

∂C

∂t
=

1

(1 + C)2
∂C

∂t
.

While using Backward Euler discretization, we compute solutions by lagging the nonlinearity q′(Cn+1
h ) as [22]

q′(Cn+1
h )

Cn+1
h − Cn

h

∆t
≈ q′(Cn

h )
Cn+1

h − Cn
h

∆t
.

For the midpoint method, we use the standard (second order) linear extrapolation [37] of C
n+1/2
h while

computing q′(C
n+1/2
h ) as

q′(C
n+1/2
h )

Cn+1
h − Cn

h

∆t
≈ q′(

3Cn
h − Cn−1

h

2
)
Cn+1

h − Cn
h

∆t
.
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(h,∆t) → ( 1
128 ,

1
2 ) ( 1

128 ,
1
4 ) ( 1

128 ,
1
8 ) ( 1

128 ,
1
16 ) ( 1

128 ,
1
32 )

∥C − Ch∥∞,0 0.0636074 0.0374917 0.0206665 0.0108985 0.00558454
Rate - 0.76262 0.85928 0.92316 0.96462
∥C − Ch∥0,0 0.0522838 0.0310798 0.0169125 0.00883222 0.00451535
Rate - 0.75039 0.87789 0.93724 0.96794
∥∇C −∇Ch∥0,0 0.0847469 0.0502647 0.0273473 0.0143409 0.00746467
Rate - 0.75362 0.87815 0.93126 0.94199
∥C − Ch∥0,1 0.0995773 0.0590973 0.0321544 0.0168424 0.00872408
Rate - 0.75272 0.87808 0.93292 0.94902

Table 5.1: Temporal convergence rates for the BE approximation with a Langmuir adsorption model to the
non-steady-state problem.

(h,∆t) → ( 1
128 ,

1
2 ) ( 1

128 ,
1
4 ) ( 1

128 ,
1
8 ) ( 1

128 ,
1
16 ) ( 1

128 ,
1
32 )

∥C − Ch∥∞,0 0.0357416 0.00951864 0.00242801 0.000611192 0.000153313
Rate - 1.9088 1.971 1.9901 1.9951
∥C − Ch∥0,0 0.0307399 0.00741601 0.00181065 0.00044712 0.000111214
Rate - 2.0514 2.0341 2.0178 2.0073
∥∇C −∇Ch∥0,0 0.744766 0.191186 0.0475431 0.0117471 0.00323681
Rate - 1.9618 2.0077 2.0169 1.8597
∥C − Ch∥0,1 0.7454 0.19133 0.0475776 0.0117556 0.00323872
Rate - 1.962 2.0077 2.0169 1.8599

Table 5.2: Temporal convergence rates for the midpoint approximation with a Langmuir adsorption model
to the non-steady-state problem.
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Fig. 5.1: Langmuir Isotherm: Temporal rate of convergence of BE and Midpoint, T = 1.0, h = 1/128. Notice
that Midpoint is giving order 2 whereas BE is giving order 1.
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Fig. 5.2: Langmuir Isotherm: Comparison of total mass for exact solution, BE, Midpoint, T = 1.0, h = 1/128,
dt = 1/8. Notice that BE overestimates total mass rather than underestimates.

IsoValue
0.00195288
0.0768064
0.126709
0.176611
0.226513
0.276416
0.326318
0.376221
0.426123
0.476025
0.525928
0.57583
0.625732
0.675635
0.725537
0.775439
0.825342
0.875244
0.925146
1.0499

IsoValue
0.000521974
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0.125849
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0.677286
0.727417
0.777548
0.827679
0.877809
0.92794
1.05327

Fig. 5.3: Langmuir isotherm: Plot of concentration while using BE (Left) & Midpoint (Right), f = 0, g = 1,
T = 3.0, h = 1/128, dt = 1/128, u = (0, 2x(x− 2)), D = I.
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Fig. 5.4: Langmuir isotherm: Comparison of total mass, f = 0, g = 1, T = 3.0, h = 1/128, dt = 1/128,
u = (0, 2x(x− 2)), D = I.

In the Figure 5.3, the concentration front gradually advances through the height of the membrane over
time as it evolves following the contour of the velocity profile. Although we cannot visibly see the difference
among two plots for BE and midpoint in Figure 5.3, we can see the significant difference in total mass
evolution in Figure 5.4.
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6. Conclusion. We provided a detailed stability and error analysis of a simulation tool for modeling
the adsorption process for the constant and affine adsorption cases. For the nonlinear, explicit adsorption,
we proved stability analysis for the continuous case and semi-discrete case and the existence of a solution
for the fully discrete case. The error analysis for this case is more involved and under some assumptions, we
were able to show an error estimate for the semi-discrete case. But numerically, we showed that the midpoint
method gives second-order convergence for all adsorption cases. The next most important step in developing
this tool is coupling this reactive transport problem with porous media flow where velocity is approximated.
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