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Abstract

Based on a refactorization of the midpoint rule, we present and analyze
a conservative, absolutely stable, adaptive, variable time-step, partitioned
second-order algorithm for decoupling two-domain parabolic problems.
Legacy codes originally using the backward Euler method can be upgraded
to this method by inserting a single line of code. We use estimates of local
truncation error for time adaptivity.

1 Introduction

This follows up on the papers [4-6] on the coupling between two-domain parabolic
problem, motivated by the coupling of atmosphere and the ocean dynamics. We
cite here [2[8|9] for work on cooling of turbine blades.

To reduce the dynamic core of the coupled atmosphere-ocean problem to
its simplest form, which still retains the essential difficulty of the coupling con-
dition, let the domain consist of two subdomains Q; and Q5 of R% d = 2,3,
with outward unit normal vectors n; and ns, respectively, coupled across an
interface I. The problem is: given v; > 0, f; : [0,T] — H(;),u;(0) € H' (),
and o € R, find (fori =1,2) u; : Q; x [0,T] — R? and p; : Q; x [0,T] — R
satisfying

Ui — viAu, = f; in Q, (1.1)
—v;Vu,; -ty = a(u; —uj) on I for i, =1,2 i#j, (1.2)
u; =0onT; =0\ (1.3)
ui(2,0) = ud(z) in Q, (1.4)

The lateral boundary conditions on €;, (1.3)), are not essential for our study.
We propose a fully decoupled second-order accurate algorithm, based on the
refactorization of the midpoint method, namely a sequential implementation
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consisting in a half-step backward-Euler method and a linear extrapolation (
see e.g., |1]).

2 Algorithm

We will restrict ourselves only to the semi-discretization in time. Let us denote
the mesh points {t, },,>0, the timestep 7,,, such that:

tn+1 :tn+Tn7 tn+1/2 :tn'i_%’rnv
and also denote the semi-discrete in time approximations

For all n > 1, we define the starting iterations by extrapolation

n-‘r% n—1

5 Tn + Tn—1 n n—%
o) = (uf —u ). (2.1)

7 %
Tn—1

Then, for k > 1, we iterate until convergence the partitioned half-step backward-
Euler method:

un+% u
(1) M ndg ndg )
7%/2 Z’lAui,(m—l) =f; in Q;, (2.2)
n+i . n+i n+2
—viVuy Ay = oy, (Z oy — g 3) on (2.3)
n—‘,—l
ui7(n2+1) =0on I}y, (2.4)

to get in the limit

the coupled system

n+3 n

Uy — U n+ n+
Wi,

Tn
n+i n+i nt+3i (BE)

—vVu; *-fp=alu; * —u; *)onl,

n+3
u; > =0onT};.

Then finally, we use linear extrapolation to obtain the values at n + 1 in the
domain Q1 U T U Qy

1
wlt=2u! " — W in QUL Wt =0onl (FE)



We note that the extrapolation step is equivalent to the forward Euler method

1, nts
uftt — 2 nt1 ntd .
-4 —yAu, 2= in Q;,
Tn/2

1
n+3
u?"'l =2u;, > —ulonl,

n+l _
u; " =0on I}y,

(2.6)

and we will use this form in Proposition to prove stability and the energy
equality. Therefore the solution is obtained by solving sequentially the following
system:

. A n_;,_i n+l .
Yi T M AR = R g
Tn/2

1 1 1
n+s A n+z n+z
- Vu, % -f; =aly; ? — u; ?

) on I, (midpoint rule)
n+%
i

=0on Fi,

n4 % .
ul ™ =20 —u in Q U, u!™ =0onT;.

Proposition 2.1. The iterations of the partitioned problem (2.2)-(2.4)) converge
linearly

K2

to the solution of the coupled (midpoint rule) problem.

Proof. The difference between the solution to the coupled (BE]) system and the
solution to the partitioned system (2.2))-(2.4) satisfies

WA S ) n @)

un+% un-‘r%
i Y, (k1) . n+i n+i R .
7 vilh(u; 2 — ui’(mﬂ)) =0in Q,,
R v/ n-‘r% B n-i-% ) - ( n—i—% i n-‘r% ) . ( n+% . n—f—% I
viV (u; Yi(wtp)) -0 = At Yi,(et1)) T (Y Ui y) ) o0 1.
n+% n+% _ )
[ 0on ;.
. . n+% n+% . 2 . .
Testing with u; * —wu, (nt1) 1D L#(Q;) respectively, and adding up the results
from both domains gives
2 n+l n+l 2 1 1
_ = T3 2 2 A, o ntg 2
0= - [[ug Uy iy llI” + - [ Uy (2l

+l _;,_l +l +l
+ 0|V (" = 2 )P+ eV (s 2 =g 2 ) I
@ ntg _ ntg o 2 ntd  ntly2
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o ntx nt3 2 n+3 nt+i\2
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« n+i n+1 n+i n+3 2
+ 5/1 ((“1 2=y ) (w7 =g (@))
@ n+i n+3 n+i n+3 2
+ 5/1 ((“2 Py ) = (ug =y (n))) :
Summation over the iteration indices x from 0 to ¢ — 1 yields

o nt+3i n+3 n+3 n+3
§/I<(“1 Py (e)) + (uy “2(@)))
2 ‘ n+ n+3 2 n+3 n+1
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Therefore the sequence of iterates {uﬁ;j }e>0 converges strongly in the L2([)

and H}(Q;) norms. Moreover, the convergence of iterative process is linear, and
the convergence factor is smaller for smaller values of the timestep. O

Proposition 2.2. The solution to the algorithm (2.2)-(2.4) and (FE) satisfies
the following discrete energy equality

N-1

1 +1 +1 +1 +1
P+ ) 4 3 (9 P 9 [l

N-—
+ +3 +3  nt3
= 5 (lull* + lluzll?) Z U ) (g ).

l\J\H

Proof. We begin by testing both the momentum equation in (BE]), and the

momentum equation in (2.6]) by un+2 , add, use the polarized identity, integrate

by parts, use the boundary condltlons, divide by 2, and use again the momentum
equations to obtain in each domain €;

+1 n+l 1 +1 +1, n+i +1
w2 = o (g2 = )+Oé/( Py Py Ve |
n I

Adding the relations from both domains, multiplying by 7,,, and summing over
the time intervals from n =1 to N — 1 yields the conclusion. O



We recall that Proposition 2.1] establishes the linear convergence of the itera-
tions which partition the calculations — in each domain, which yield the
coupled system . Moreover, the details in the proof show that the number
of iterations can be reduced provided the time-step 7, is small, or if 7,, cho-
sen in a time-adaptive framework, which also ensures a good initial guess .
There are several ways of implementing time-adaptivity (see e.g. [1L|11}/13] and
the references therein), among which we present here one based on the estimate
of the temporal local truncation error fnﬂ, using the difference between the

(midpoint rule) solution and U;L-H, a variable-step Adams-Bashforth solution:

ot — g (Tn + Tnfl)(Tn + Tp—1 + Tn72) _on—1 Tn(Tn +Tho1+ Tn72)
¢ ! Tn—l(Tn—l + Tn—2) ¢ Tn—1Tn—2
(AB2—like)
+ u;z—Q Tn(Tn + Tn—l) -
7—77,72(7—7171 + Tn72)
We denote
1 2
Ty =— ntl gt g LTE-AB2
n+1 1_ 1/(24Rn) ; Huz Ui ||H (24) ( )
where

1 1 _ _ _
R, = — 7(1+Tn 1)(1+27n 1+Tn 2>.

24 8 Tn Tn Tn

If fn+1 > tol, then 7y, is decreased, and the algorithm repeats the midpoint rule step with
a reduced time-step. Respectively, if Tn-&-l < tol, then 7, is increased, and the computation
moves to the next time interval, with the increased time step. The safety factor 8 < 1 reduces
the probability of the new time-steps being rejected in the [if ||[Th41|| < tol] test in the
Algorithm



Algorithm 1: Factorization of the midpoint rule for heat-transfer

Input :Q;, v, k
Output: u;

1 initialization: set tol and g, such that 7y is in the convergence range
(see e.g. |7, p. 367]), compute u; with a one step second-order
accurate method, set the safety coefficient S=0.8;

compute uf and 7 with a second-order accurate method, to =t + 7q;

tnew — to, Fnew _ T,

for n > 2 (i.e., t"v, T“ew,u?,u?_l,u?_Q are given);

while "V < T do

Tp TV

evaluate u}™! with the midpoint rule (midpoint rule));

evaluate j—\‘n+1 with ;

o | 7% 7, min{1.5,max{0.2, 5tol /| Tl }};

10 if Hfm—l” < tol then

o N O Ok wWN

11 ‘ g1 <t 70V, 0V — 1, ne—n+1
12 end
13 end

3 Nonlinear Interface Condition

We consider the two-domain parabolic problem described above changing the
interface condition to a nonlinear one. For ease of notation, let ¥ = afu; —u,|°,
where s € {04:3}[0,1]. The problem becomes: given v; > 0,f; : [0,T] —
HY(Q;), and u;(0) € HY(SY), find (for i = 1,2) u; : Q; x [0,T] — RY and

pi : Q x [0,T] = R satisfying

wit — viAu; = fi in Q;,
—v;Vu, -y = W(u; —uy) on I fori,j =1,2 i#j,

ui(z,0) = ud () in Q.

Again, we consider only the semi-discretization in time. Let us denote the mesh
points {t, }n>0, the timestep 7, such that:

bl =tn + Ty tng12 =tn + 37n,
and also denote the semi-discrete in time approximations
For all n > 1, we define the starting iterations by extrapolation

Y M(u” — uﬂ_%). (3.5)

% 4 %
Tn—1

_.n
=u,;,

= vl
vl

n—+ n—+
U; (0 U; (1



Then, for k > 1, we iterate until convergence the partitioned half-step backward-
Euler method:

n+3 n
u, —u;
2, (k+1 2 + n+ .
(T }2 —viluglgy = in Qs (3.6)
n+2 - n+2 n+2 n+% 1/2 n-&-% 1/2 n+%
Vlvuz J(k41) " l:[l(ka) i,(k+1) }\I/(n) | |\I/(H71) uj,(m) on I’ (37)
u?z;il) =0onT}, (3.8)
n 1 n 1 n . . .
where \11(52 =« ui,?}c) u; ?_kg) to get in the limit
n+3 n+3
Jim (A = (3.9)
the coupled system
n+3 n 1
u —_ VZAun+2 = fln+§ ln Qi’
Tn/2
n n 1 n 1 BE
—;Vu, *+2 ﬁi:\Il”+%(ui+2—uj+2)onI, (BE)
un+2 =0on I}

Then finally, we use linear extrapolation to obtain the values at n + 1 in the
domain Q; U T Uy

1
wptt =20t —wt in QUL Wt =0on T (FE)

Therefore the solution is obtained by solving sequentially the following sys-
tem:

n+s3 n
Uy ~ U +3 +3 .
-t —VzAun 2 :fln 2 in ;,

Tn/2
nt3 . _ antl, nts nt+i ) )

—viVu; ? -y =" 2 (uy * —uy o ?)on (midpoint rule)

nt3

i 2 =0on Fi,

n+1 """% n : n+1
u T =2u, * —ulin U, u; " =0onT;.

Proposition 3.1. The iterations of the partitioned problem (3.6))-(3.8) converge
linearly

WEE I L2(1) 0 HY ()

to the solution of the coupled (midpoint rule) problem.



Proof. Denote (,

ntg +%
,<k+1> = U
1

‘I’(k>2 = alu)(s -

) as the integral at the interface, and

n+2 s
Ua (k)

Testing the coupled system (BE]) and the solution to the partitioned system
(3.6)-(3.8)) with v; € L?(Q;) and subtracting we get

1 n+3 n+3 nti nt+i
Tn/2( ! 2 —u, (k+1) 'Ul)Ql —+ 11 (V(ul 2 _ Uy k2+1 ) Vvl)
n+ n+ n+s n+3 n+
+ <(“1 2 —uy ) ¥ 7ty (k+1)(‘1’ -¥07)

<u;+2 i

’1/2<’\Dn+%|1/2 . ’\IJ?:_%) 1/2),'Ul> = O,

n+

Uy (n2 ‘\II(H)
1 n+1 n+i

Tn/2 (U2 ’ u21(k2+1)702)92
1
+ <(u;’+2 “;J(rrirl)
1
- e

Lo 11/2 1/2 | 1l 1/2
R A (R L At It Aas]
+V2(V(u;+% fun (b 1) ), va)

YOI 4ol <,€+1)(\1’”+2 _ \Ifz’j)f)

L

AN e ) ) o
Letting v; = u?Jr% — uzzr]il), adding the equations and using the Cauchy-
Schwarz inequality yields
1
(™ = I, + s =t 11,
+Vl”V Uy " ??kz—&-l) H?zl +VQHV Uy = ;?k2+1) ||92
1 n n+i n
<5 [ (R + G ) e - vt
“3), (67t e

1 n41 n+i 2
"‘5/(‘“ 2’ + ’“2,(,3)

)’\I,n+% _ \I,Z:;%‘

b3 (8 I EA ) st - i,
/ |un+2 T?kz-s-l) ’ / |“nJr2 “;Zfﬂ) ’.
We note that for s € [0, 1] we have
s — \I/?,;;%| < a22(s_1)(]u?+2 - u;H(—Q)’ + |u;J(rj) - u;ﬂr%‘s),



and therefore

1 /4 n . . .
?ﬂ(”“ tou +k2+1 HQl + [lu o +k2+1 HQZ) (3.10)

Ve =TI, + el VT - T )G,

= /1 QUT “?J(rkzﬂ + ’“Z+ u;—é_ﬁ2+1) 2)
e Rl I (N A U o T P R T B

1 n+ n+ n+ n+ +l
+§/I( Uyt =y () "““ ’ 2(k)‘)\1’n2
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Using the continuity of the trace operator and the inverse inequality
we have that

n+3 n+ 1 M2 CQ(QZ) n+i n+1
Mllu; " * =, kiL1)HL4(I = A h? u; 2 —u, lﬁH)HL?(Q) (3.11)
V(@ = a5 ) B,

for any arbitrary constant M, to be chosen later. Under the small time step

assumption ((3.12)

(3.12)

relation (3.11]) yields

n+ i n+
Mu; "2 =, (k+1)HL4(I) (3.13)
n+i n+i n+ ”JF 2
< *H“ C -, (k2+1) . T vl |V (u; ,(ki—l))|

Substituting into (3.10f) gives

(v =1l - TkmhmﬁWﬁ% 4 acn)

< a224(s_1)/<‘u1 41 24 ’u;l7J(rj+1) >(|un+2 u;”(;%) 25 |u;t§) u;+2’29)
Y AR A D L
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+a223_3/1( ?J’;) +|u ] )|\P7’+2|(|u”+2 uﬁ,f " +|u2 (n 1) U;H

which by the Hoélder inequality further yields

n+ n+ n+ n+
(M = 1) (Il = gy + s ™ = a0 1)

S (Y PR 17 Y

(k+1)11 g, (k+1) = 5 (1)

x<||u1 Uﬁéllm I v Ly
S (O P e i P 1 P i
+a225*3(!|u?,?5|}“§s(,) + il e, 5(,))

x (™ = {3 e + ™ = 3y
+ 02207 ([luf {5 e ot (] e (,))

< (lud ™ =y o2 a5 ™ =y b2 sy )-
]
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