WeBWorK Assignment Homework08 is due : 05/21/2016 at 04:09pm EDT.

Reference: Axler, Precalculus, 2nd ed, Sections 4.4, 4.5, and 4.6

Here's the list of **functions and symbols** that WeBWorK understands.

1. (1 pt) Questions 8-16:

Find the exact value of each without using a calculator:

a) $\tan\left(\frac{5\pi}{3}\right) = \underline{\qquad}$ b) $\tan\left(\frac{4\pi}{3}\right) = \underline{\qquad}$ c) $\cot\left(\frac{3\pi}{4}\right) = \underline{\qquad}$ d) $\sec\left(\frac{\pi}{3}\right) = \underline{\qquad}$ e) $\csc\left(\frac{7\pi}{6}\right) = \underline{\qquad}$

2. (1 pt) Suppose the angle θ is in the first quadrant, $0 \le \theta \le \pi/2$, and $\cos(\theta) = \frac{1}{8}$. Find exact values (as fractions, not decimal approximations) for the following.

(a) $\csc(\theta) =$ _____

(b) $\cot(\theta) =$ _____

3. (1 pt) Suppose the angle θ is in the second quadrant, $\pi/2 \le \theta \le \pi$, and $\sin(\theta) = \frac{1}{7}$. Find exact values (as fractions, not decimal approximations) for the following.

(a) $\sec \theta =$ _____

(b) $\tan \theta =$ _____

4. (1 pt) Suppose the angle θ is in the fourth quadrant, $\frac{3\pi}{2} \le \theta \le 2\pi$, and $\tan(\theta) = \frac{-3}{4}$. Find exact values (as fractions, not decimal approximations) for the following.

(a) $\sec(\theta) =$ _____

(b) $\sin(\theta) =$ _____

5. (1 pt) Evaluate the following expressions. The answer must be given as a fraction, NO DECIMALS. If the answer involves a square root it should be entered as sqrt. For instance, the square root of 2 should be written as sqrt(2).

If $tan(\theta) = -\frac{5}{3}$ and $sin(\theta) > 0$, then find

- (a) $\sin(\theta) =$ _____
- (b) $\cos(\theta) =$ _____
- (c) $\sec(\theta) =$ _____
- (d) $\csc(\theta) =$ _____
- (e) $\cot(\theta) =$ _____

6. (1 pt) You are given that $\pi < \theta < \frac{3\pi}{2}$. Fill in the missing entries in the table below.

sinθ	$\cos\theta$	tan 0	cotθ	secθ	cscθ
-0.1000					

7. (1 pt) Find the equation of the line through the origin forming a 37° angle with the positive *x* axis. Equation: ______

Find the equation of the line through the origin forming a 127° angle with the positive *x* axis.

Hint: The line is perpendicular to the one you found previously. Equation: _____

8. (1 pt) You are given that $0 < \theta < \frac{\pi}{2}$. Fill in the missing entries in the table below.

sinθ	$\cos\theta$	tanθ	cotθ	$\sec \theta$	$\csc \theta$
		2.1000			

9. (1 pt)

Find the exact values for the lengths of the labeled segments *a*, *b* and *p* drawn in green, red, and blue, respectively. Note that r = 6 is the radius of the circle, and s = 5 is the arc length from the point (6,0) around the circle to the indicated point.

(Click on graph to enlarge)

10. (1 pt)

The top vertex of a right triangle has an angle of 63° , and the horizontal leg has length 16. Find the lengths of the other two sides.

11. (1 pt)

The top vertex of a right triangle has an angle of 35° , and the vertical leg has length 8. Find the lengths of the other two sides.

12. (1 pt)

The top vertex of a right triangle has an angle of 39° , and the hypotenuse has length 2. Find the lengths of the two legs.

a = _____

b = _____

13. (1 pt) From a vantage point 64 ft away from the base of a building, the top of the building is sighted at an angle of elevation of 34° . To the nearest foot, how high is the building? Height = _____ feet

14. (1 pt) A 27 foot ladder leans against a vertical wall forming an angle of 75° with the ground. How high above the ground does the ladder touch the wall?

Height = _____ feet

- **15.** (1 pt) Fill in the blanks:
- 1. If $\tan x = 3.5$ then $\tan(-x) =$ _____
- 2. If $\sin x = 0.6$ then $\sin(-x) =$ _____
- 3. If $\cos x = 0.1$ then $\cos(-x) =$ _____
- 4. If $\tan x = 2.5$ then $\tan(\pi + x) =$ _____

16. (1 pt) Suppose

uppose

$$\sin(u) = \frac{3}{5}$$

and $\cos(u)$ is **positive**. Then

 $\begin{array}{l} \cos(u) = \underline{\qquad} \\ \tan(u) = \underline{\qquad} \\ \sin(-u) = \underline{\qquad} \\ \sin(-u) = \underline{\qquad} \\ \cos(-u) = \underline{\qquad} \\ \tan(-u) = \underline{\qquad} \\ \sin(u + \pi) = \underline{\qquad} \\ \sin(u + \pi) = \underline{\qquad} \\ \tan(u + \pi) = \underline{\qquad} \\ \sin(u + \frac{\pi}{2}) = \underline{\qquad} \\ \cos(u + \frac{\pi}{2}) = \underline{\qquad} \\ \tan(u + \frac{\pi}{2}) = \underline{\qquad} \\ \end{array}$

17. (1 pt)

Suppose

$$\sin(u) = \frac{3}{5}$$

and cos(u) is **negative**. Then

$$\cos(u) =$$

2

 $\tan(u) = \underline{\qquad} \\
\sin(-u) = \underline{\qquad}$ $\cos(-u) =$ tan(-u) =_____ $\sin(u+\pi) =$ $\cos(u+\pi) =$ _____ $\tan\left(u+\pi\right) = \underline{\qquad}$ $\sin\left(u+\frac{\pi}{2}\right) = \underline{\qquad}$ $\cos\left(u + \frac{\pi}{2}\right) = \underline{\qquad}$ $\tan\left(u + \frac{\pi}{2}\right) = \underline{\qquad}$

> 18. (1 pt) If $\sin\theta = -0.8$ and $\pi < \theta < \frac{3\pi}{2}$ then $sin(-\theta) =$ _____ $\sin(\theta + 2\pi) =$ _____ $\sin(\theta - 2\pi) =$ _____ $sin(\theta + \pi) =$ _____ $sin(\theta - \pi) =$ _____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- $\frac{\sin\left(\theta + \frac{\pi}{2}\right)}{\sin\left(\theta \frac{\pi}{2}\right)} = \underline{\qquad}$ **19.** (1 pt) If $\cos \theta = -0.2$ and $\frac{\pi}{2} < \theta < \pi$ then $\cos(-\theta) =$ $\cos(\theta + 2\pi) =$ _____ $\cos(\theta - 2\pi) =$ _____ $\cos(\theta + \pi) =$ _____ $\cos(\theta - \pi) =$ _____ $\cos\left(\theta + \frac{\pi}{2}\right) = \underline{\qquad}$ $\cos\left(\theta - \frac{\pi}{2}\right) = \underline{\qquad}$ **20.** (1 pt) If $\tan \theta = 3.1$ and $0 < \theta < \frac{\pi}{2}$ then
- $\tan(-\theta) =$ _____
- $\tan(\theta + \pi) =$ _____ $\tan(\theta - \pi) =$ _____
- $\tan\left(\theta + \frac{\pi}{2}\right) = \underline{\qquad}$ $\tan\left(\theta \frac{\pi}{2}\right) = \underline{\qquad}$