Preliminary Exam in Analysis, May 1, 2024

Problem 1. Suppose that $f, g:[0,1] \rightarrow \mathbb{R}$ are continuous functions and such that $f(x)<g(x)$ for all $x \in[0,1]$. Prove that there is a polynomial $p(x)$ such that

$$
f(x)<p(x)<g(x) \quad \text { for all } x \in[0,1]
$$

Problem 2. Prove that $\sum_{n=1}^{\infty} \frac{\left|x^{2} y+\cos (n)\right|^{1 / 4}}{\sqrt{n}\left(n+x^{2}+y^{2}\right)}$ is uniformly convergent for $(x, y) \in \mathbb{R}^{2}$.

Problem 3. Recall that a homeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one and onto map such that both f and f^{-1} are continuous. Prove that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a homeomorphism, then $\lim _{|x| \rightarrow \infty}|f(x)|=\infty$.

Problem 4. Let $D \subset \mathbb{R}^{2}$ be closed and bounded, and suppose that $f, g \in C^{1}\left(\mathbb{R}^{2}\right)$ are such that

$$
\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \neq 0 \quad \text { in } D
$$

Prove that there are at most finitely many points $(x, y) \in D$ such that $f(x, y)=g(x, y)=0$.

Problem 5. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ and $f: D \rightarrow \mathbb{R}$ be a continuous function. Prove that there exists a point $p_{0} \in D$ such that

$$
\iint_{D}\left(x^{4}+y^{4}\right) f(x, y) d A=\frac{\pi f\left(p_{0}\right)}{4}
$$

Problem 6. Let $\Phi: \mathbb{R}^{2} \rightarrow \Phi\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{2}$ be a diffeomorphism. Prove that

$$
\iint_{B^{2}(0,1)}\|D \Phi\| d A=\iint_{\Phi\left(B^{2}(0,1)\right)}\left\|D\left(\Phi^{-1}\right)\right\| d A
$$

where $\|A\|=\left(\sum_{i, j=1}^{2} a_{i j}^{2}\right)^{1 / 2}$ is the Hilbert-Schmidt norm of the matrix.
Hint. Compare $\|A\|$ and $\left\|A^{-1}\right\|$ for a 2×2 matrix.

$$
\sin (2 \theta)=2 \sin \theta \cos \theta, \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta, \sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2}, \cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2}
$$

