Preliminary Exam in Analysis, January, 2025

- 1. Let K be a compact subset of \mathbb{R} , and suppose that $f, f_n : K \to \mathbb{R}$ are continuous for all $n \in \mathbb{N}$. Suppose that, for every $x \in K$ we have $f_{n+1}(x) \leq f_n(x)$ for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} f_n(x) = f(x)$.
 - (a) Show that $f_n(x) \to f(x)$ uniformly on K as $n \to \infty$.
 - (b) Give a counterexample to the statement of part (a) if K is not assumed to be compact.
- 2. Assume Ω is a connected, smooth, bounded, open set in \mathbb{R}^n and let $u : \overline{\Omega} \to \mathbb{R}$ be a twice continuously differentiable function that satisfies for some p > 1

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) \equiv \sum_{\alpha=1}^{n} \partial_{\alpha} \left(|\nabla u|^{p-2} \partial_{\alpha} u \right) = 0 \quad \text{in } \Omega$$

Assume additionally that $\langle \nu(x), \nabla u(x) \rangle_{\mathbb{R}^n} = 0$ whenever $x \in \partial \Omega$, where $\nu(x)$ denotes the outwards facing unit normal to $x \in \partial \Omega$. Show that u is constant. **Hint:** Consider $\int_{\Omega} |\nabla u|^p$.

3. Suppose that f is a real-valued smooth function on \mathbb{R}^2 , such that $f(x, \frac{1}{1+x}) > 0$ for each $x \in [0, 1]$. Show that there exists a constant $c \in \mathbb{R}$, an interval I containing 1, and a continuously differentiable function $g: I \to \mathbb{R}$ such that

$$\int_0^1 \int_0^{\frac{g(x)}{1+u}} f(xu, xv) \, dv \, du = c, \qquad \text{for each } x \in I.$$
(1)

4. Let $f: [0,\infty) \to \mathbb{R}$ be continuous. For $n \in \mathbb{N}$ define the continuous function $f_n: [0,\infty) \to \mathbb{R}$ by

$$f_n(x) := f(x^n).$$

Show that the set $\{f_1, f_2, \dots\}$ is equicontinuous at x = 1 if and only if f is a constant function.

5. Let $p \in (1, \infty)$. Assume that $f_k : \mathbb{R} \to \mathbb{R}$ is a sequence of continuously differentiable functions that satisfy

$$M := \sup_{k \in \mathbb{N}} \left(\int_{-1}^{1} |f_k(z)| dz + \int_{-1}^{1} |f'_k(z)|^p \, dz \right) < \infty.$$
⁽²⁾

- (a) Prove that for each $k \in \mathbb{N}$ there exists $x_k \in [-1, 1]$ such that $|f_k(x_k)| \leq \frac{M}{2}$.
- (b) Show that $(f_k)_{k \in \mathbb{N}}$ has a subsequence which is uniformly convergent on [-1, 1].

Hint: Recall Hölder's inequality $\int_{-1}^{1} f(x)g(x)dx \le \left(\int_{-1}^{1} |f(x)|^{p} dx\right)^{\frac{1}{p}} \left(\int_{-1}^{1} |g(x)|^{\frac{p}{p-1}} dx\right)^{\frac{p-1}{p}}$

- 6. Let $\phi : (0, +\infty) \to \mathbb{R}, \ \phi(x) = \frac{3}{4}x + \frac{1}{x^3}.$
 - (a) Show that for any $x \in [\sqrt{2}, 2]$ there exists some $\theta \in [0, 1]$ such that

$$\phi(x) = \sqrt{2} + \frac{1}{2!} \frac{12}{(\theta x + (1-\theta)\sqrt{2})^5} (x - \sqrt{2})^2.$$
 (\phi)

(b) Consider the recursive sequence

$$x_{n+1} = \frac{3}{4}x_n + \frac{1}{x_n^3}, \qquad \forall n \ge 0$$

with the initial value $x_0 = 1.5$. Show that the sequence $\{x_n\}_{n\geq 0}$ converges to $\sqrt{2} \approx 1.4142$, and

$$|\sqrt{2} - x_5| \le 10^{-32}$$

Hint: $0 < x_0 - \sqrt{2} \approx 0.0858 < 10^{-1}$.