Linear Algebra Preliminary Exam

May 3, 2024

1. Let A, B be two $n \times n$ complex matrices. Show that there exists two complex numbers c_{1}, c_{2}, not all zero, such that

$$
\operatorname{det}\left(c_{1} A+c_{2} B\right)=0
$$

2. Let X be an n dimensional linear space over $\mathbb{C}, S, T \in L(X, X)$. Show that
(a)

$$
N_{S-I} \cap N_{T-I} \subset N_{S T-I},
$$

(b)

$$
\operatorname{rank}(S T-I) \leq \operatorname{rank}(S-I)+\operatorname{rank}(T-I)
$$

3. Let A be an $n \times n$ complex matrix. Show that A and A^{T} have the same JCF and hence are similar to each other.
4. Let A be an $n \times n$ real matrix and r be the spectral radius of $A+A^{T}$. Show that

$$
|\operatorname{Re} \lambda| \leq \frac{r}{2}
$$

holds for any eigenvalue λ of A.
5. Let A, B be two self-adjoint positive definite complex matrices such that $A^{2}>B^{2}$, show that $A>B$. (You could use without proof the result that $A>B>0$ implies $P A P^{*}>P B P^{*}>0$ for any invertible P.)
6. Let A be a given $n \times n$ real matrix. Prove that the following are equivalent: (a) A and $-A^{T}$ share no eigenvalue.
(b) For every symmetric real matrix B, there exists a unique symmetric matrix X such that $A X+X A^{T}=B$. (Hint: (a) implies that $p_{A}\left(-A^{T}\right)$ is invertible where p_{A} is the characteristic polynomial of A.)

