Preliminary Exam in Analysis, August 19, 2024

Problem 1. Let $E \subset \mathbb{R}^n$ be compact and let

$$K = \{ x \in \mathbb{R}^n : |x - y| = 1 \text{ for some } y \in E \}.$$

Prove that K is compact.

Problem 2. Let X be a nonempty set, and let F(X) denote the space of all functions $f: X \to \mathbb{R}$. For $f, g \in F(X)$ we define:

$$d(f,g) := \sup_{x \in X} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|}.$$

It follows that (F(X), d) is a metric space. (Do not prove this). Prove that a sequence $(f_n)_n \subset F(X)$ satisfies $d(f_n, f) \to 0$ for some $f \in F(X)$ if and only if $(f_n)_n$ converges uniformly to f.

Problem 3. Let p > 0. Assume that $f_k : \mathbb{R} \to \mathbb{R}$ is a sequence of continuously differentiable functions that satisfy

(1)
$$M := \sup_{k \in \mathbb{N}} \sup_{x \in [-1,1]} \left(|f_k(x)| + \int_{-1}^1 |f'_k(z)|^p \, dz \right) < \infty.$$

- (a) Show that if p = 2, $(f_k)_{k \in \mathbb{N}}$ has a subsequence uniformly convergent on [-1, 1].
- (b) If p = 1, explicitly construct a sequence $(f_k)_{k \in \mathbb{N}}$ that satisfies (1), but does not have a uniformly convergent subsequence on [-1, 1].

Hint. (a) Use the Cauchy-Schwarz inequality; (b) Approximate the function f(x) = 1 if x > 0, f(x) = -1 if x < 0. Use piecewise approximation but make sure that the functions are continuously differentiable.

Problem 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be be infinitely differentiable, $f \in C^{\infty}$. Assume that there is a vector $v \in \mathbb{R}^n$ and a sequence $0 \neq x_k \to 0$ such that $Df(x_k) = v$ for all k. Prove that $\det D^2 f(0) = 0$.

Problem 5.

(a) Prove that if
$$a > 1$$
 and $k \ge 1$, then $\sum_{n=2}^{\infty} \frac{(\log n)^k}{n^a} < \infty$.
(b) Prove that the function $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$, $x > 1$, is infinitely differentiable in $(1, \infty)$

Hint: You can use part (a) to prove (b), even if you do not know how to prove (a).

Problem 6. Let $F = (f,g) : \mathbb{R}^2 \to \mathbb{R}^2$ be of class C^{∞} . Assume that F has compact support and that

$$\int_{-\infty}^{\infty} f(x,0)g_x(x,0)\,dx = 1.$$

Prove that there is $(x, y) \in \mathbb{R}^2$ such that det $DF(x, y) \neq 0$. Hint. Apply the divergence theorem to a suitable region.