Linear Algebra Preliminary Exam January 2025

Problem 1 Find the matrix representation of the derivative operator on the space of polynomials of degree at most 2 in the basis $\{1, x - 1, x^2 + 2x + 1\}$.

Problem 2 Let $A, B \in \mathbb{R}^{n \times n}$ be two matrices. Show that $p(t) = \det(A + tB)$ is a polynomial and $deg(p) \leq rank(B)$.

Problem 3 Let S be a $n \times n$ Nilpotent matrix, show that S is similar to $S^{2024} - S$.

Problem 4 Let $A : X \to X$ where X is a finite dimensional complex Euclidean space. Let x be a unit vector such that

$$||Ax|| = ||A||.$$

Show that x is an eigenvector of A^*A .

Problem 5 Let H, K be $n \times n$ complex matrices and A = K + H. Suppose $H^* = H$, $K^* = -K$, Show that

$$\sum_{i=1}^{n} |\lambda_i^2| \le \sum_{i=1}^{n} |\mu_i^2| + \sum_{i=1}^{n} |\sigma_i^2|$$

where $\{\mu_i\}_{i=1}^n$, $\{\sigma_i\}_{i=1}^n$ and $\{\lambda_i\}_{i=1}^n$ are eigenvalues of K, H and A respectively.

Problem 6 Let $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$ be functions. Prove that the following are equivalent.

1. For all sets of n distinct points $x_1, \ldots, x_n \in \mathbb{R}$ and for all y_1, \ldots, y_n , there exists a set of coefficients a_1, \ldots, a_n such that

$$\sum_{i=1}^{n} a_i f_i(x_j) = y_j \qquad \forall \ j = 1, \dots, n.$$

2. For any set of coefficients a_1, \ldots, a_n , the function $x \mapsto \sum_{i=1}^n a_i f_i(x)$ has at most n-1 zeros in \mathbb{R} unless $a_1 = \cdots = a_n = 0$.