The role of ongoing spatio-temporal activity on
shaping responses to inputs in biological networks
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Abstract

Biological systems such as networks of neurons are able to produce
a wide range of intrinsic patterns such as waves and synchronous oscil-
lations. On the other hand, these systems must constantly respond to
external stimuli. The goal of this project is to find conditions generat-
ing complex spatio-temporal activity in these networks networks and then
use various mathematical tools to examine how these dynamics affect re-
sponses to extrinsic activity such as noise or patterned inputs.

Biological systems are built in order that they can respond rapidly to ex-
ternal signals on time scales ranging from milliseconds to months. (Here I am
not talking about evolutionary time scales, but those that occur in the ordinary
lifetime of an organism.) In the most general setting, we can regard the response
as obeying some (non-autonomous) differential equation where the external in-
puts are either independent of the response or perhaps, themselves, depend on
the response. The “internal” state of the organism plays an important role in
shaping the response to the external signal and thus, I am, first interested in
what unperturbed internal responses can be. I will present two examples from
previous work that I have done and then discuss nwe research that I want to
pursue.

Flicker phosphenes. When exposed to diffuse flickering light, the human sub-
jects will often perceive complex geometric patterns called flicker phosphenes.
Similar patterns are produced by pressure on the eyes and in the early stages
of drug-induced hallucinations. In [3] we showed that a network of spatially
distributed excitatory and inhibitory neurons of the form:

Te%"_u = F(KSE(x)*u_Kie(x) *U+Ie(x’t)) (1)
ﬁ%ﬂ = F(Kei(r) *u— Kii(z) xv + Li(x,1))

was able to produce this type of pattern only when various internal dynamics
occurred in the system. Here u,v are the excitatory and inhibitory neuron
populations and K(z) * u means the spatial convolution of K with uw. In the



Figure 1: Patterns in a square domain with low frequency and high frequency
flicker

case of flicker phosphenes, I is a uniform periodic input. Figure 1 shows sample
simulations of the network on a square domain. We showed that when there
was a stable spatially homogeneous rest state, (%, v), such that it was in the so-
called “inhibitory-stabilized” state [6], then we could obtain spatially complex
patterns from uniform inputs. Key to this response to the external stimulus
was the fact that the internal dynamics without inputs had damped oscillatory
responses and had certain kinds of spatial coupling.

Flocking with predators. In the second example, I consider the effect of
a predator on the flocking behavior of prey. A simple model for flocking of
animals involves rules in which each individual wants to maintain a certain
distance between itself and others yet not be too far away. If x; is the spatial
position of the organism (x could be in any space dimension, although, typically,
2 dimensions), then a standard model [5] for flocking has the form

dx; Ti— T
Lo ST K (g — )

where K (r) is negative for small r and positive for large r. Thus, if the distance
between organisms is too small, then they repel each other, otherwise, they
attract. In general, this model forms a compact swarm where all the individu-
als group together but maintain a finite distance between them. The internal
dynamics is completely determined by the function K(r). We have recently
explored what happens when a predator is introduced. It’s position is y and we
assume that the predator repels the flock and is itself attracted to the flock. In
one spatial dimension, we have found that there are multiple stable states such
as the predator in the middle or the predtor on the outside chasing the flock.
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Figure 2: Modulation of the surround inhibition (k) shon in (A) results in
different bifurcations of waves and synchrony. (B) shows the global coherence
as h varies and (C) some representative spatial patterns.

However, as the attraction of the predator increases, oscillations occur. Believ-
ing that this was an artifact of using one space dimension, we have explored the
effects of the prey in two-dimensions. We find the former behaviors still hold,
but, no oscillations. Surprisingly, we found that if there were certain members
of the flock that were more or less attractive to the predator, then the flock
oscillations returned. Key to determining which of these responses occurs is the
internal flock dynamics in absence of the prey.

While these examples come from quite different biological systems and occur
on vastly different scales, there is much similarity in the underlying mathematics,
namely, spatio-temporal pattern formation. I have several ongoing projects
which involve the interactions between intrinsic ongoing dynamics and external
stimuli.

Waves and stimuli Wavelike activity is ubiquitous in the cerebral cortex [8]
especially in the motor cortex [7]. The waves take several forms including fronts
that represent transitions between up and down states and periodic wavetrains.
The latter can be modeled by networks of rhythmically firing neurons and form
into so-called plane waves whose direction can serve as a code for motor move-
ments. We have recently explored how the direction of these waves can me
modulated and controlled via external inputs into different subpopulations of
neurons. (see figure 2). These neurons control the inhibition in the network
and the depth of that inhibition controls the stability of ongoing synchronous
oscillations. Whwn the synchronous state becomes unstable, it produces the
desired waves and their direction is controlled by the active excitatory connec-
tions. Thus it is possible to turn off and on the waves and produce (through the
appropriate decoder network) the desires outputs. Possible feedback from this
network to the inputs could be used to sharpen the transition from synchrony



m=4 m=20

time

space

Figure 3: Spatial resonance leading to flicker in a 1-dimensional network. Cosine
waves of various spatial frequencies can produce oscillatory instabilities.

and to reduce errors [2].

With my former postdoc, Jonathan Touboul, we have started to look at
how external broad-band signals (e.g. noise) interacts with ongoing wave-like
activity. We have preliminary results showing that noise acts nonlinearly on
the macroscopic activity of large neuronal networks, and as such, modifying
noise levels can induce transitions (bifurcations) related to qualitative observ-
able changes in the activity. Since noise is ubiquitous in neural and biological
systems, it is important to see how this noise can be harnessed and controlled
and to see how it affects these nonlinear spatially extended networks.

Interactions with spatial patterns In previous work, we have examined
how temporally patterned stimuli (rhythmic) interact with the ongoing activity
in cortical networks to produce spatially structured patterns of activity. The
converse of this question is what kinds of activity can be induced by spatially
patterned activity. Such questions have been explored in the context of of ori-
entation tuning in the visual cortex [4] but not so much in the case of spatially
structured activity. For example, viewing a high contrast striped pattern will
produce a sense of flickering in normal subjects and can sometimes produce
discomfort in susceptible patients [1]. Thus, we have begun exploring the inter-
actions of networks of the form (1) in the presence of spatial grating in one- and
two-dimensions. We have preliminary results that indicate the amplification
and instability of certain spatial frequencies. Figure 3 illustrates an example
where the network is sensitive to intermediate spatial frequencies (m = 5) but
not high and low spatial frequencies. In addition to interactions with regular
stimuli, we have begun to explore the consequences of locally correlated inputs
on networks with disorganized ongoing activity. Feedforward synchronization
of activity has been studied in “all-to-all” networks, but there have been few if
any studies on the dynamics of spatially distributed networks.
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