Practice Problems to Midterm Exam 1

Spring 2021
Solutions

Sections 5.5, 6.1, and 6.2 Integration

1. (10 points) Identify any errors in each solution. Clearly explain the mistakes and how you could correct them.
(a) (5 points) Problem Statement: Evaluate the integral $\int_{0}^{\frac{\pi}{4}} \frac{\sin t}{\cos t} d t$.

Solution: Let $u=\sin t$, then $d u=\cos t$.
Substituting, $\int_{0}^{\frac{\pi}{4}} \frac{\sin t}{\cos t} d t=\int_{0}^{\frac{\pi}{4}} u d u=\frac{u^{2}}{2}+C$.

Solution: All corrections are:

$$
\begin{array}{ll}
u=\cos t & \mathbf{+ 1} \mathbf{p t} \\
d u=\sin t d t & \mathbf{+ 1} \mathbf{p t} \\
\int_{0}^{\frac{\pi}{4}} \frac{\sin t}{\cos t} d t=\int_{u(0)}^{u\left(\frac{\pi}{4}\right)} \frac{1}{u} d u & \mathbf{+ 1} \mathbf{p t} \\
=\int_{1}^{\frac{\sqrt{2}}{2}} \frac{1}{u} d u & \mathbf{+ 1} \mathbf{p t} \\
=\left.\ln |u|\right|_{1} ^{\frac{\sqrt{2}}{2}}=\ln \left(\frac{\sqrt{2}}{2}\right) & \mathbf{+ 1} \mathbf{~ p t}
\end{array}
$$

(b) (5 points) Problem Statement: Evaluate the integral $\int t \ln t d t$

Solution: Letting $u=t$ and $d v=\ln t$, then $d u=1$ and $v=\frac{1}{t}$.
Integration by parts gives, $\int t \ln t d t=t\left(\frac{1}{t}\right)+\int \frac{1}{t} d t=1+\ln t$.

Solution: All corrections are:

$$
\begin{array}{lr}
u=\ln t, d v=t d t & \mathbf{+ 1} \mathbf{p t} \\
d u=\frac{1}{t} d t, v=\frac{1}{2} t^{2} & \mathbf{+ 1} \mathbf{p t} \\
\int t \ln t d t=\frac{1}{2} t^{2} \ln t-\frac{1}{2} \int t d t & \mathbf{+ 2} \mathbf{p t s} \\
=\frac{1}{2} t^{2} \ln t-\frac{1}{4} t^{2}+C & \mathbf{+ 1} \mathbf{~ p t}
\end{array}
$$

2. (10 points) Evaluate the integral $I=\int x \sqrt{4-x^{2}} d x$

Solution: Substitution: $u=4-x^{2}$,
$d u=-2 x d x, x d x=-\frac{1}{2} d u$.
$+1 \mathrm{pt}$ $+2 \mathrm{pts}$
$+2 \mathrm{pts}$
$+2 \mathrm{pts}$
$+1 \mathrm{pt}$
$+2 \mathrm{pts}$
3. (10 points) Evaluate the integral $I=\int \sqrt{4-x^{2}} d x$

Solution: Trig. substitution: $x=2 \sin t, d x=2 \cos t d t$.
$\sqrt{4-x^{2}}=\sqrt{4-4 \sin ^{2} t}=2 \cos t$.
Then $\quad I=\int 2 \cos t \cdot 2 \cos t d t=4 \int \cos ^{2} t d t=2 \int(1+\cos 2 t) d t$
$I=2 t+\sin 2 t+C=2 t+2 \cos t \sin t+C$
$+2 \mathrm{pts}$
We know from the definition of x that $\sin t=\frac{1}{2} x$. Then $t=\sin ^{-1}\left(\frac{1}{2} x\right)$.
To find $\cos t$ we look at the picture below.

Using the fact that $\sin t=\frac{x}{2}$ we set
the opposite side to the angle t to be x and hypotenuse to be $2 . \quad+\mathbf{1} \mathbf{~ p t}$

The adjacent side is $\sqrt{4-x^{2}} \quad+\mathbf{1} \mathbf{~ p t}$
and $\cos t=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{\sqrt{4-x^{2}}}{2} \quad+\mathbf{1} \mathbf{~ p t}$

Therefore
$I=2 \sin ^{-1}\left(\frac{1}{2} x\right)-2 \cdot \frac{\sqrt{4-x^{2}}}{2} \cdot \frac{x}{2}+C=2 \sin ^{-1}\left(\frac{1}{2} x\right)-\frac{1}{2} x \sqrt{4-x^{2}}+C$.
$+2 \mathrm{pts}$
4.

$$
\begin{equation*}
\text { Find } \quad \int \sin (\theta) \cos (\theta) d \theta \tag{1}
\end{equation*}
$$

(a) You probably solved (1) using the substitution $u=\sin (\theta)$ or $u=\cos (\theta)$. Now find $\int \sin (\theta) \cos (\theta) d \theta$ using the other substitution. (i.e. the one you did not use in (1).
(b) There is another way of finding this integral which involves the trig identities

$$
\begin{gathered}
\sin (2 \theta)=2 \sin (\theta) \cos (\theta) \\
\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)
\end{gathered}
$$

Find $\int \sin (\theta) \cos (\theta) d \theta$ using one of these identities and the substitution $u=2 \theta$.
(c) You should now have three different expressions for the indefinite integral $\int \sin (\theta) \cos (\theta) d \theta$.

Are they really different?
Are they all correct?
Explain.

Solution: 1(a).

$$
\begin{gathered}
\int \sin (\theta) \cos (\theta) d \theta \\
\text { Let } u=\sin (\theta) \quad: \quad d u=\cos (\theta) d \theta \\
\int \sin (\theta) \cos (\theta) d \theta=\int u d u=\frac{u^{2}}{2}=\frac{1}{2} \sin ^{2}(\theta)+C_{1}
\end{gathered}
$$

OR 1(b).

$$
\begin{gathered}
\int \sin (\theta) \cos (\theta) d \theta \\
\text { Let } u=\cos (\theta) \quad: \quad d u=-\sin (\theta) d \theta \\
\int \sin (\theta) \cos (\theta) d \theta=-\int u d u=-\frac{u^{2}}{2}=-\frac{1}{2} \cos ^{2}(\theta)+C_{2}
\end{gathered}
$$

2.

$$
\begin{gathered}
\sin (\theta) \cos (\theta)=\frac{\sin (2 \theta)}{2} \\
\text { Let } u=2(\theta) \quad: \quad \frac{1}{2} d u=d \theta \\
\frac{1}{2} \int \sin u \frac{1}{2} d u=-\frac{1}{4} \cos (2 \theta)+C_{3}
\end{gathered}
$$

3. The functions differ by a constant. [Calculate each of the three results when $\theta=0$.]

Section 6.3 Partial fractions

5. (a) (5 points) Find the partial fraction decomposition of $\frac{x+2}{x^{2}-x}$.

Solution: Partial fraction decomposition:
$\frac{x+2}{x^{2}-x}=\frac{1 \cdot x+2}{(x-1) x}=\frac{A}{x-1}+\frac{B}{x}=\frac{(A+B) x-B}{x(x-1)}$
$+2 \mathrm{pts}$
A comparison of like terms gives: $A+B=1,-B=2 \Rightarrow A=3, B=-2 . \quad+\mathbf{2} \mathbf{p t s}$
Hence, $\frac{x+2}{x^{2}-x}=\frac{3}{x-1}-\frac{2}{x}$.
(b) (5 points) Evaluate the integral $I=\int_{2}^{3} \frac{x+2}{x^{2}-x} d x . \quad$ Simplify your answer.

Solution: $\quad I=\int_{2}^{3}\left(\frac{3}{x-1}-\frac{2}{x}\right) d x \quad$ by using the result from part (a) $\quad+\mathbf{1} \mathbf{~ p t}$
$I=[3 \ln |x-1|-2 \ln |x|]_{2}^{3}$
$+1 \mathrm{pt}$
$I=3 \ln 2-2 \ln 3-3 \ln 1+2 \ln 2=5 \ln 2-2 \ln 3$
$I=\ln 32-\ln 9=\ln \left(\frac{32}{9}\right)$.
$+1 \mathrm{pt}$

Section 6.6 Improper Integrals

6. (10 points) Write correct formula for evaluating the improper integral $I=\int_{0}^{\infty} \frac{3}{e^{x} \sqrt{x-2}} d x$ Do not integrate!

Solution: The integrand $\frac{3}{e^{x} \sqrt{x-2}}$ has discontinuity at $x=2 . \quad+\mathbf{2} \mathbf{~ p t s}$
Therefore, the integral has to be split into three integrals, the first for $0 \leq x \leq 2$, the second for $2 \leq x \leq a$, where a is any number greater than 2 , say 3 , and the third for $x>a . \quad+\mathbf{2}$ pts
$I=\int_{0}^{2} \frac{3}{e^{x} \sqrt{x-2}} d x+\int_{2}^{3} \frac{3}{e^{x} \sqrt{x-2}} d x+\int_{3}^{\infty} \frac{3}{e^{x} \sqrt{x-2}} d x$
$I=\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{3}{e^{x} \sqrt{x-2}} d x+\lim _{t \rightarrow 2^{+}} \int_{t}^{10} \frac{3}{e^{x} \sqrt{x-2}} d x+\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{3}{e^{x} \sqrt{x-2}} d x$
7. (10 points) Evaluate the improper integral $I=\int_{4}^{5} \frac{6 x}{\sqrt{x^{2}-16}} d x$
if it is convergent or show that it is divergent.

Solution: The integral is improper since the integrand
has discontinuity at $x=4$.
$+2 \mathrm{pts}$
$+1 \mathrm{pt}$
$+1 \mathrm{pt}$
$+1 \mathrm{pt}$
$+2 \mathrm{pts}$
$+2 \mathrm{pts}$
$I=\left.6 \lim _{t \rightarrow 4^{+}} u^{1 / 2}\right|_{t^{2}-16} ^{9}=6 \lim _{t \rightarrow 4^{+}}\left(3-\left(t^{2}-16\right)^{1 / 2}\right)$
$I=6(3-0)=18$

The value is finite, so the integral is convergent.
8. (10 points) Mike was asked to evaluate the integral $I=\int_{0}^{10} \frac{a+1}{x^{2}-(a-1) x-a} d x$ Below is his solution:
$\frac{a+1}{x^{2}-(a-1) x-a}=\frac{a+1}{(x-a)(x+1)}=\frac{1}{x-a}-\frac{1}{x+1}$
$I=\int_{0}^{10} \frac{1}{x-a} d x-\int_{0}^{10} \frac{1}{x+1} d x=\left.\ln |x-a|\right|_{0} ^{10}-\left.\ln |x+1|\right|_{0} ^{10}$
$I=\ln |10-a|-\ln |a|-\ln 11+\ln 1=\ln \frac{|10-a|}{11|a|}$
Explain why Mike's solution cannot be considered as a right one. Correct his answer. Do not integrate!

Solution: If $0 \leq a \leq 10$ the integrand $\frac{a+1}{x^{2}-(a-1) x-a}$ has discontinuity at $x=a$.

Therefore, the integral is improper and has to be split into two integrals, one for $0 \leq x \leq a$ and the other for $a \leq x \leq 10$.
$+2 \mathrm{pts}$
$+2 \mathrm{pts}$
$I=\int_{0}^{a} \frac{1}{x-a} d x+\int_{a}^{10} \frac{1}{x-a} d x+\int_{0}^{10} \frac{1}{x+1} d x$
$+4 \mathrm{pts}$
$I=\lim _{t \rightarrow a^{-}} \int_{0}^{t} \frac{1}{x-a} d x+\lim _{t \rightarrow a^{+}} \int_{t}^{10} \frac{1}{x-a} d x+\int_{0}^{10} \frac{1}{x+1} d x$

$$
+4 \mathrm{pts}
$$

If $a<0$ or $a>10$ Mike's solution is correct.

Section 7.1 Areas Between Curves

9. (10 points) Consider the region R bounded by parabola $y=-x^{2}+4 x$ with vertex at $(2,4)$ and by lines $x=0, x=3, y=a x+4$, where $a>0$. The area of R is 12 . Find the value of a. Support your answer.

Solution: When $x \geq 0$ all y-values of the line $y=a x+4$ are greater than 4 because $a \geq 0$. The maximum y-value of the parabola is 4 and is attained at its vertex.
Therefore the line $y=a x+4$ lies above the parabola.
$+2 \mathrm{pts}$

Then the area between the line and the parabola is

$$
\begin{array}{ll}
A=\int_{0}^{3}\left(a x+4-\left(-x^{2}+4 x\right)\right) d x & \mathbf{+ 2} \mathbf{p t s} \\
A=\int_{0}^{3}\left(x^{2}+a x-4 x+4\right) d x & \mathbf{+ 1} \mathbf{p t} \\
A=\left[\frac{x^{3}}{3}+\frac{a}{2} x^{2}-2 x^{2}+4 x\right]_{0}^{3} & \mathbf{+ 2} \mathbf{p t s} \\
A=9+\frac{9}{2} a-18+12=\frac{9}{2} a+3=12 & \mathbf{+ 2} \mathbf{~ p t s}
\end{array}
$$

Therefore, $\frac{9}{2} a=9, \quad a=2$.

Sections 7.2 and 7.3 Volumes

10. (10 points) Consider the region R bounded by lines $y=0, x=1$, and the function $f(x)=a \sqrt{x}$, where $a>0$. The volume V_{1} is generated by rotating the region R about the axis $x=0$. The volume V_{2} is generated by rotating the region R about the axis $y=0$. Find the value of a for which $V_{1}=V_{2}$. Support your answer.

Solution: To evaluate V_{1} we use the method of cylindrical shells.

The shell at x has radius $r=x$, circumference $2 \pi x$, and height $a \sqrt{x}$.
Therefore, $V_{1}=\int_{0}^{1} 2 \pi x(a \sqrt{x}) d x$
$+1 \mathrm{pt}$
+1 pt
+1 pt
$=2 \pi a \int_{0}^{1} x^{3 / 2} d x$
$+1 \mathrm{pt}$
$=2 \pi a\left[\frac{2}{5} x^{5 / 2}\right]_{0}^{1}=\frac{4}{5} \pi a \quad+\mathbf{1} \mathbf{p t}$

To evaluate V_{2} we use the method of washers.

The washer at x has radius $r=a \sqrt{x} . \quad+\mathbf{1} \mathbf{p t}$
Therefore, $V_{2}=\int_{0}^{1} \pi(a \sqrt{x})^{2} d x \quad+\mathbf{1} \mathbf{~ p t}$
$\begin{array}{ll}=\pi a^{2} \int_{0}^{1} x d x & \mathbf{+ 1} \mathbf{p t} \\ =\pi a^{2}\left[\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2} \pi a^{2} & \mathbf{+ 1} \mathbf{p t}\end{array}$

We have $\frac{4}{5} \pi a=\frac{1}{2} \pi a^{2}, \frac{4}{5}=\frac{1}{2} a, a=\frac{8}{5}=1.6$.
$+2 \mathrm{pts}$
11. (10 points) By using the method of washers find the volume of the solid generated by rotating the region bounded by the curves $y=\sqrt{x}$ and $y=x^{2}$ about the line $y=1$.

Solution: Method of washers (see the picture).
$\sqrt{x}=x^{2} \quad \Rightarrow \quad x=0$ and $x=1 \quad \Rightarrow \quad 0 \leq x \leq 1$.
$+1 \mathrm{pt}$
$\Delta V=V_{\text {outer }}-V_{\text {inner }}$.
$V_{\text {outer }}=\pi R^{2} \Delta x, \quad V_{\text {inner }}=\pi r^{2} \Delta x, \quad+\mathbf{1} \mathbf{p t}$
where Δx is the height.
The radius R is the distance between the line $y=1$ and the curve $y=x^{2}$. Therefore $R=1-x^{2}$.

The radius r is the distance between the line $y=1$ and the curve $y=\sqrt{x}$. Therefore $r=1-\sqrt{x}$.
$\Delta V=\pi\left(\left(1-x^{2}\right)^{2}-(1-\sqrt{x})^{2}\right) \Delta x . \quad \quad+\mathbf{1} \mathbf{p t}$
$\Delta V=\pi\left(1-2 x^{2}+x^{4}-1+2 \sqrt{x}-x\right) \Delta x$.
$\Delta V=\pi\left(x^{4}-2 x^{2}-x+2 \sqrt{x}\right) \Delta x . \quad+\mathbf{1} \mathbf{p t}$

$d V=\pi\left(x^{4}-2 x^{2}-x+2 \sqrt{x}\right) d x$.
$+1 \mathrm{pt}$
$V=\int_{0}^{1} \pi\left(x^{4}-2 x^{2}-x+2 \sqrt{x}\right) d x=\pi\left[\frac{x^{5}}{5}-\frac{2 x^{3}}{3}-\frac{x^{2}}{2}+\frac{4}{3} x^{3 / 2}\right]_{0}^{1}$
$=\pi\left(\frac{1}{5}-\frac{2}{3}-\frac{1}{2}+\frac{4}{3}\right) \quad+\mathbf{1} \mathbf{p t}$
$V=\frac{11}{30} \pi$.
12. (10 points) Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $y=x^{2}, y=2 x$ about the axis $x=3$.

Solution: $\quad x^{2}=2 x \quad \Rightarrow \quad x=0, x=2 \quad \Rightarrow \quad 0 \leq x \leq 2$

The shell has radius $3-x$, circumference

$$
2 \pi(3-x), \text { and height } 2 x-x^{2} .
$$

Therefore, $V=\int_{0}^{2} 2 \pi(3-x)\left(2 x-x^{2}\right) d x \quad+\mathbf{2} \mathbf{p t s}$
$=2 \pi \int_{0}^{2}\left(6 x-5 x^{2}+x^{3}\right) d x$
$+2 \mathrm{pts}$
$=2 \pi\left[3 x^{2}-\frac{5 x^{3}}{3}+\frac{x^{4}}{4}\right]_{0}^{2}$
$=2 \pi\left[12-\frac{40}{3}+4\right]=\frac{16}{3} \pi$

Section 7.4 Arc Length

13. (10 points) Mary was asked to evaluate arc length of the curve $y=\sqrt{|x|}$ when x changes from -2 to 3. She found that the arc length L can be evaluated by using the integral $L=\int_{-2}^{3} \sqrt{1+\frac{1}{2 x}} d x$
What is wrong in Mary's formula? Correct her answer. Do not integrate!

Solution: The integrand $\sqrt{1+\frac{1}{2 x}}$, if it is correct, has discontinuity at $x=0$.
Therefore, the integral is improper and has to be split into two integrals, one for $-2 \leq x \leq 0$ and the other for $0 \leq x \leq 3$.

Let's find the correct integrand:
$|x|=\left\{\begin{array}{rl}x, & x \geq 0 \\ -x, & x<0\end{array} \quad y=\left\{\begin{aligned} \sqrt{x}, & x \geq 0 \\ \sqrt{-x}, & x<0\end{aligned}\right.\right.$
$\frac{d y}{d x}=\left\{\begin{array}{rl}\frac{1}{2 \sqrt{x}}, & x \geq 0 \\ -\frac{1}{2 \sqrt{-x}}, & x<0\end{array} \quad\left(\frac{d y}{d x}\right)^{2}=\left\{\begin{aligned} \frac{1}{4 x}, & x \geq 0 \\ -\frac{1}{4 x}, & x<0\end{aligned}\right.\right.$
$\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}= \begin{cases}\sqrt{1+\frac{1}{4 x}}, & x \geq 0 \\ \sqrt{1-\frac{1}{4 x}}, & x<0\end{cases}$

Therefore, $\quad L=\int_{-2}^{0} \sqrt{1-\frac{1}{4 x}} d x+\int_{0}^{3} \sqrt{1+\frac{1}{4 x}} d x$
14. (10 points) Find the exact length L of the curve $y=\frac{x^{2}}{4}-\frac{\ln x}{2}$ when $1 \leq x \leq 2$.

Hint: $1+\left(\frac{x}{2}-\frac{1}{2 x}\right)^{2}=1+\left(\frac{x}{2}\right)^{2}-\frac{1}{2}+\left(\frac{1}{2 x}\right)^{2}=\left(\frac{x}{2}\right)^{2}+\frac{1}{2}+\left(\frac{1}{2 x}\right)^{2}=\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}$.

Solution: $\quad \frac{d y}{d x}=\frac{x}{2}-\frac{1}{2 x}$
$+2 \mathrm{pts}$
$1+\left(\frac{d y}{d x}\right)^{2}=1+\left(\frac{x}{2}-\frac{1}{2 x}\right)^{2}=\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}, \quad \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\frac{x}{2}+\frac{1}{2 x}$.
$+2 \mathrm{pts}$
$L=\frac{1}{2} \int_{1}^{2}\left(x+\frac{1}{x}\right) d x$
$+2 \mathrm{pts}$
$L=\frac{1}{2}\left[\frac{1}{2} x^{2}+\ln x\right]_{1}^{2}$
$+2 \mathrm{pts}$
$L=\frac{1}{2}\left[2+\ln 2-\frac{1}{2}+0\right]=\frac{3}{4}+\frac{\ln 2}{2}$
$+2 \mathrm{pts}$

Section 7.6 Applications to physics and engineering (work, force)

15. (10 points) A chain laying on the ground is 12 m long and its mass is 72 kg . How much work is required to raise one end of the chain to the height of 8 m ?

Solution: Consider the end of the chain of the length 8 m . It is lifted vertically. Draw the x-axis vertically, directed up.

Consider a small piece of the chain of the length Δx
that was lifted to the height $x, 0 \leq x \leq 8$, where
$x=0$ corresponds to the ground level. $+\mathbf{2} \mathbf{~ p t s}$
If, for example, we lift the right end of the chain then only its right part of the
length of 8 m is being lifted. The left part of the length 4 m lays on the ground.
The point denoted by x is $4+x \mathrm{~m}$ away from the most left end. It is lifted to the
height of $x \mathrm{~m}$.
Therefore its displacement is $d=x$.
The mass of the small piece is $\Delta m=\frac{72}{12} \Delta x=6 \Delta x$.
$+\mathbf{+ 1} \mathbf{~ p t}$
The work needed to lift it to the height x is
$\Delta W=\Delta m \cdot g \cdot d=(6 \Delta x) g x=6 g x \Delta x$.
16. (10 points) A cylindrical aquarium has radius of 4 feet and height of 7 feet. The depth of water is 4 feet. How much work is required to pump all of the water out over the side?
(You may use the following equality $62.5=\frac{1000}{16} \mathrm{lb} / \mathrm{ft}^{2}$)
Solution: We place the x-axis vertically in the middle of the aquarium with the origin is in the bottom of the cylinder. A horizontal cylindrical slice of water Δx is placed at the coordinate x, where $0 \leq x \leq 4$. See the picture.

The slice Δx thick has a volume of

$$
\begin{array}{ll}
\Delta V=\pi r^{2} h=\pi \cdot 4^{2} \cdot \Delta x=16 \pi \Delta x \mathrm{ft}^{3} & \mathbf{+ 1} \mathbf{~ p t} \\
\text { and weighs } \frac{1000}{16} \cdot 16 \pi \Delta x=1000 \pi \Delta x \mathrm{lb} & \mathbf{+ 1} \mathbf{~ p t}
\end{array}
$$

The distance between the slice and the

$$
\text { top of the aquarium is } d=7-x \quad+\mathbf{1} \mathbf{~ p t}
$$

The work needed to pump water out is

$$
\begin{array}{ll}
W=\int_{0}^{4} 1000 \pi(7-x) d x & +\mathbf{2} \mathbf{p t s} \\
W=1000 \pi\left[7 x-\frac{x^{2}}{2}\right]_{0}^{4} & +\mathbf{2} \mathbf{~ p t s} \\
=1000 \pi[28-8]=20,000 \pi & +\mathbf{2} \mathbf{~ p t s}
\end{array}
$$

17. (10 points) A water tank has the shape of a sphere of radius 2 m with a spout at the top of length of 1 m , as in the picture below. The spherical part of the tank is half full of water and the spout is empty.

Set up but do not evaluate an integral to find the work required to empty the tank by pumping all of the water out of the spout. The density of water is $\rho=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and the acceleration due to gravity is $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

Solution:

We use the direction up as a positive one for the x-axis. The origin is in the center of the sphere.
Let x be an arbitrary number on the x-axis in the lower half of the spherical tank. Then $-2 \leq x \leq 0 . \quad+\mathbf{1}$ pt The small volume of the slice that passes through the point x is $\Delta V=\pi r^{2} \Delta x$. $\quad+2 \mathbf{p t s}$ We have $r^{2}+x^{2}=2^{2}, \quad r^{2}=4-x^{2} \quad+\mathbf{1} \mathbf{p t}$
$\Delta V=\pi\left(4-x^{2}\right) \Delta x \quad+\mathbf{1} \mathbf{~ p t}$
$\Delta F=\rho g \Delta V=9800 \pi\left(4-x^{2}\right) \Delta x \quad+\mathbf{1} \mathbf{~ p t}$
$d=2+1-x=3-x$. (Note that $-x \geq 0) \quad+\mathbf{1} \mathbf{~ p t}$ $\Delta W=\Delta F \cdot d=9800 \pi\left(4-x^{2}\right)(3-x) \Delta x \quad+1 \mathbf{p t}$
$W=\int_{-2}^{0} 9800 \pi\left(4-x^{2}\right)(3-x) d x \quad+\mathbf{2} \mathbf{p t s}$

Section 7.7 Differential Equations and Applications of DEs

18. Consider the initial value problem:

$$
y^{\prime}-(\tan x) y=1, \quad y(0)=-3 .
$$

(a) (2 points) Determine the type of the differential equation.

Solution: It is a first order linear differential equation. +2 pts
(b) (6 points) Find the general solution of the problem.

Solution: The integrating factor is $\quad u=e^{-\int \tan x d x}=e^{\ln (\cos x)}=\cos x . \quad+\mathbf{2} \mathbf{p t s}$ (Note: $\quad-\int \tan x d x=-\int \frac{\sin x}{\cos x} d x$ and use the substitution $v=\cos x$ to evaluate the integral).

Then
$(\cos x) y^{\prime}-(\sin x) y=\cos x, \quad((\cos x) y)^{\prime}=\cos x, \quad(\cos x) y=\sin x+c . \quad+\mathbf{2} \mathbf{p t s}$
So, the general solution is $y(x)=\tan x+c \sec x . \quad+\mathbf{2} \mathbf{p t s}$
(c) (2 points) Find the particular solution of this problem that satisfies given initial condition.

$$
\begin{array}{ll}
\text { Solution: } \quad y(0)=\tan 0+c \sec 0=c=-3 . & \mathbf{+ 1} \mathbf{~ p t} \\
\text { The particular solution is } y(x)=\tan x-3 \sec x . & \mathbf{+ 1} \mathbf{~ p t}
\end{array}
$$

19. Determine the type of the given differential equation. Solve the initial-value problem. Show all work.
(a) (10 points) $x y^{\prime}=(1+x) y, \quad y(1)=e$.

Solution: It is a separable equation +2 pts

$$
\begin{array}{ll}
x \frac{d y}{d x}=(1+x) y, \quad \frac{d y}{y}=\frac{1+x}{x} d x, \quad \frac{d y}{y}=\left(\frac{1}{x}+1\right) d x & \mathbf{+ 2} \mathbf{p t s} \\
\int \frac{d y}{y}=\int\left(\frac{1}{x}+1\right) d x, \quad \ln |y|=\ln |x|+x+C & \mathbf{+ 2} \mathbf{p t s} \\
|y|=e^{C}|x| e^{x}, \quad y=A x e^{x} & \mathbf{+ 2} \mathbf{p t s} \\
y(1)=A e=e, \quad A=1 & \mathbf{+ 1} \mathbf{p t s} \\
y=x e^{x} & \mathbf{+ 1} \mathbf{p t s}
\end{array}
$$

Alternative solution: $\quad y^{\prime}-\frac{1+x}{x} y=0$. First order linear equation. $\quad+\mathbf{2} \mathbf{p t s}$
The integrating factor is $I(x)=e^{\int-\left(\frac{1}{x}+1\right) d x}=e^{-\ln x-x}=x^{-1} e^{-x} . \quad+\mathbf{2} \mathbf{p t s}$
Then

$$
\begin{array}{lc}
\left(x^{-1} e^{-x} y\right)^{\prime}=0 & +\mathbf{2} \mathbf{p t s} \\
x^{-1} e^{-x} y=C, y=C x e^{x} & \mathbf{+ 2} \mathbf{p t s} \\
y(1)=C e=e, C=1 & \mathbf{+ 1} \mathbf{p t} \\
y=x e^{x} & \mathbf{+ 1} \mathbf{~ p t}
\end{array}
$$

(b) (10 points) $\quad y^{\prime}+\frac{2 x}{x^{2}+1} y=\frac{1}{x^{2}+1}, \quad y(0)=3$.

Solution: It is a first order linear differential equation. $+\mathbf{2 ~ p t s}$
The integrating factor is $I(x)=e^{\int \frac{2 x}{x^{2}+1} d x}=e^{\ln \left(x^{2}+1\right)}=x^{2}+1 . \quad+\mathbf{3} \mathbf{p t s}$
Then

$$
\begin{array}{ll}
\left(x^{2}+1\right) y^{\prime}+2 x y=1, \quad\left(\left(x^{2}+1\right) y\right)^{\prime}=1, \quad\left(x^{2}+1\right) y=\int d x=x+C & \mathbf{+ 2} \mathbf{p t s} \\
y=\frac{x+C}{x^{2}+1} . & \mathbf{+ 1} \mathbf{p t} \\
y(0)=C=3, \quad C=3 & \mathbf{+ 1} \mathbf{p t} \\
y(x)=\frac{x+3}{x^{2}+1} & \mathbf{+ 1} \mathbf{~ p t}
\end{array}
$$

20. A large tank initially contains 10 liters of salty water with a concentration of 60 grams of salt per liter of water. At time zero, a solution with concentration of 10 grams of salt per liter begins flowing into the tank at a rate of 2 liters per minute. Simultaneously, the well mixed solution drains out at the rate of 2 liters per minute.
(a) (1 point) Find the initial condition.

Solution: Let $x(t)$ be the amount of salt in pounds in the tank at time t measured in minutes.

Then the initial condition is $x(0)=10$ liters $\times 60$ gram/liter $=600$ grams. $\quad+\mathbf{1} \mathbf{~ p t}$
(b) (2 points) Write down the balance equation that models the process.

Solution: \quad Rate in $=10$ gram $/$ liter $\times 2$ liter $/$ minute $=20$ gram $/$ minute.
Rate out $=\frac{x}{10}$ gram $/$ liter $\times 2$ liter $/$ minute $=\frac{x}{5}$ gram $/$ minute $. \quad+\mathbf{1} \mathbf{p t}$

Balance equation: $\quad x^{\prime}=20-\frac{x}{5} \quad \Leftrightarrow \quad x^{\prime}=-\frac{x-100}{5}$.
(c) (6 points) Solve the balance equation to find a formula of the amount of salt in the tank after t minutes?

Solution: The balance equation is a separable equation. $+\mathbf{1} \mathbf{p t}$
$\frac{d x}{d t}=-\frac{x-100}{5}, \quad \frac{d x}{x-100}=-\frac{1}{5} d t, \quad \int \frac{d x}{x-100}=-\frac{1}{5} \int d t . \quad+\mathbf{2 p t s}$
$\ln |x-100|=-\frac{1}{5} t+C, \quad|x-100|=e^{-t / 5} \cdot e^{C}, \quad x-100=A e^{-t / 5}, \quad$ where $A= \pm e^{C}$.
$x(t)=A e^{-t / 5}+100$ is the general solution.
$+1 \mathrm{pt}$
To find A we use the initial condition found before:
$x(0)=600=A+100 \Leftrightarrow A=500$.
$+1 \mathrm{pt}$
Therefore the number of pounds of salt in the tank in t minutes is
$x(t)=500 e^{-t / 5}+100$.
$+1 \mathrm{pt}$
(d) (1 points) How much salt is in the tank after 10 minutes? Leave answer in exact form.

Solution: $\quad x(10)=500 e^{-10 / 5}+100=500 e^{-2}+100=\frac{500}{e^{2}}+100$ gram $. \quad+\mathbf{1} \mathbf{p t}$

Section Inhomogeneous Second Order Differential Equations

21. (10 points) Consider the second-order ordinary differential equation for $y=y(x)$:

$$
3 y^{\prime \prime}-6 y^{\prime}+k y=G(x),
$$

where k is a constant, and $G(x)$ is a function of x.
(a) (5 points) Find the value of k such that the corresponding characteristic equation has two repeated real roots, and then for this value of k find the general solution to the corresponding homogeneous differential equation.

Solution: Homogeneous equation is $3 y^{\prime \prime}-6 y^{\prime}+k y=0 . \quad+\mathbf{1} \mathbf{p t}$
Char. eq. is $r^{2}-6 r+k=0$.
It has two repeated real roots when $D=0 . \quad+\mathbf{1} \mathbf{~ p t}$
Then $D=36-4 \cdot 3 \cdot k=36-12 k=0, k=3 . \quad+\mathbf{1} \mathbf{p t}$
The repeated real roots are $r_{1}=r_{2}=-\frac{-6}{2 \cdot 3}=1$. $\quad+\mathbf{1} \mathbf{p t}$
Solution to homogeneous DE is $y_{h}(x)=e^{x}\left(c_{1}+c_{2} x\right) . \quad+\mathbf{1} \mathbf{~ p t}$
(b) (5 points) If $G(x)=P_{m}(x) \cos x$ where $P_{m}(x)$ is a polynomial of degree $m>0$, what is the trial form of a particular solution to the inhomogeneous differential equation? For $m=1$ pick an example of $P_{m}(x)$ and find a form of a particular solution to the inhomogeneous equation.

Solution: $\quad y_{p}(x)=Q_{m}(x) \cos x+R_{m}(x) \sin x$, where $Q_{m}(x)$ and $R_{m}(x)$ are polynomials of degree m written in general form.
$+2 \mathrm{pts}$
For $m=1$ let $P_{1}(x)=3 x-11$. Then $G(x)=(3 x-11) \cos x$
and $y_{p}(x)=(a x+b) \cos x+(c x+d) \sin x$.
22. (10 points) For the equation $y^{\prime \prime}-4 y^{\prime}-5 y=12 e^{-t}$.
(a) (3 points) Find the solution of the corresponding homogeneous equation.

Solution: Homogeneous equation is $y^{\prime \prime}-4 y^{\prime}-5 y=0 . \quad+\mathbf{1} \mathbf{p t}$
Char. eq. is $\lambda^{2}-4 \lambda-5=0$.
It has distinct real roots $\lambda_{1}=-1$ and $\lambda_{2}=5 . \quad+\mathbf{1} \mathbf{p t}$
$y_{h}(t)=c_{1} e^{-t}+c_{2} e^{5 t} . \quad+\mathbf{1} \mathbf{~ p t}$
(b) (5 points) Find a particular solution by using the method of undetermined coefficients.

Solution: Since the function e^{-t} in one of solutions of the homogeneous equation we are looking for a particular solution in the form
$y_{p}(t)=a t e^{-t} . \quad+2$ pts
Then $y_{p}^{\prime}=a(1-t) e^{-t}$ and $y_{p}^{\prime \prime}=a(-2+t) e^{-t} . \quad+\mathbf{1} \mathbf{p t}$
$y_{p}^{\prime \prime}-4 y_{p}^{\prime}-5 y_{p}=a(-2+t-4+4 t-5 t) e^{-t}=-6 a e^{-t}=12 e^{-t} \Rightarrow a=-2 . \quad+\mathbf{1} \mathbf{p t}$
Hence $y_{p}(t)=-2 t e^{-t} . \quad+\mathbf{1} \mathbf{p t}$
(c) (2 points) Find the general solution.

Solution: $y(t)=y_{h}+y_{p}=c_{1} e^{-t}+c_{2} e^{5 t}-2 t e^{-t}=\left(c_{1}-2 t\right) e^{-t}+c_{2} e^{5 t} \quad \quad+\mathbf{2} \mathbf{p t s}$
23. (10 points) A forced mass spring system with an external driving force is modeled by

$$
x^{\prime \prime}+4 x^{\prime}+5 x=10 \sin 3 t,
$$

where t is measured in seconds and x in meters.
(a) (3 points) Find the transient state, i.e. the solution to the associated homogeneous equation.

Solution: This is the underdamped case because $c=1<w_{0}=\sqrt{5}$.
Homogeneous equation is $x^{\prime \prime}+4 x^{\prime}+5 x=0 . \quad+\mathbf{1} \mathbf{~ p t}$
Char. eq. is $r^{2}+4 r+5=0$.
It has complex root $r=-2+i$ (and its conjugate $\bar{r}=-2-i$). $\quad+\mathbf{1} \mathbf{~ p t}$
The transient state is $x(t)=e^{-2 t}\left(c_{1} \cos t+c_{2} \sin t\right) . \quad+\mathbf{1} \mathbf{p t}$
(b) (5 points) By using the method of undetermined coefficients find the steady-state, i.e. a particular solution, to the forced equation.

Solution: $\quad x_{p}(t)=a \cos 3 t+b \sin 3 t$,
$x_{p}^{\prime}(t)=-3 a \sin 3 t+3 b \cos 3 t, x_{p}^{\prime \prime}(t)=-9 x_{p} . \quad+\mathbf{1} \mathbf{p t}$
Then
$x_{p}^{\prime \prime}+4 x_{p}^{\prime}+5 x_{p}=-9 x_{p}+4 x_{p}^{\prime}+5 x_{p}=-4 x_{p}+4 x_{p}^{\prime}$
$=-4 a \cos 3 t-4 b \sin 3 t-12 a \sin 3 t+12 b \cos 3 t=10 \sin 3 t$
$-4 a+12 b=0,-4 b-12 a=10 \Leftrightarrow a-3 b=0,2 b+6 a=-5 \Leftrightarrow$
$a=3 b, 20 b=-5 \Leftrightarrow a=-\frac{3}{4}, b=-\frac{1}{4}$.
$+1 \mathrm{pt}$
Therefore, $x_{p}(t)=-\frac{3}{4} \cos 3 t-\frac{1}{4} \sin 3 t$.
(c) (2 points) Write down the general solution.

Solution: $\quad x(t)=e^{-2 t}\left(c_{1} \cos t+c_{2} \sin t\right)-\frac{3}{4} \cos 3 t-\frac{1}{4} \sin 3 t$.

