1. Solve the initial-value problem. Show all the work. Mention a type of the given differential equation.
(a) $\frac{y^{\prime}}{3}=x^{2} y, \quad y(0)=-8, \quad$ where $y^{\prime}=\frac{d y}{d x}$.
(b) $t \frac{d x}{d t}=4 x+t^{4}, \quad x(1)=5$.
(c) $y^{\prime \prime}-4 y=2 e^{4 t}, \quad y(0)=-3, \quad y^{\prime}(0)=11$.
2. Find the general solution to the equation

$$
y^{\prime \prime}+4 y^{\prime}+4 y=12 t^{2}-10 .
$$

3. A $1-\mathrm{kg}$ mass when attached to a spring, stretches the spring to a distance of 4.9 m .
(a) Calculate the spring constant.
(b) The system is plased in a viscous medium that supplies a damping constant $\mu=3 \mathrm{~kg} / \mathrm{s}$. The system is allowed to come to rest. Then the mass is displaced 1 m in the downward direction and given a sharp tap, imparting an instanteneous velocity of $1 \mathrm{~m} / \mathrm{s}$ in the downward direction. Find the position of the mass as a function of time.
4. Use Laplace transform to solve the IVP

$$
y^{\prime \prime}-y=e^{t} \cos t, \quad y(0)=y^{\prime}(0)=0 .
$$

5. Find the Laplace transform of the function

$$
g(t)= \begin{cases}3 t & \text { for } 0 \leq t<2 \\ 4 & \text { for } t \geq 2\end{cases}
$$

6. Find the unit impulse response to the initial-value problem

$$
y^{\prime \prime}-2 y^{\prime}+5 y=\delta(t), \quad y(0)=y^{\prime}(0)=0
$$

7. For the initial-value problem $y^{\prime}=y+4 t, y(0)=1$ calculate the first two iterations of Euler's method with step size $h=0.1$.
8. Write the second-order equation as a system of two first-order equations

$$
y^{\prime \prime}-e^{-2 t}+3 t^{2} y=\cos t y^{\prime}
$$

9. Find the general solution to the system. Write the answer in a vector form.

$$
\begin{aligned}
y_{1}^{\prime} & =-3 y_{1}-6 y_{2} \\
y_{2}^{\prime} & =-y_{2}
\end{aligned}
$$

10. By using the variation of parameters technique and the fundamental matrix find a particular solution to the system

$$
\begin{aligned}
y_{1}^{\prime} & =-3 y_{1}-6 y_{2}+2 e^{-5 t} \\
y_{2}^{\prime} & =-y_{2}
\end{aligned}
$$

You may use results from the previous problem.
11. For the nonlinear system

$$
\begin{aligned}
x^{\prime} & =x(4 y-5) \\
y^{\prime} & =y(3-x)
\end{aligned}
$$

find all equilibrium points, classify their types and determine stability (stable, unstable or asymptotically stable).
12. Expand the given function in a Fourier cosine series valid on the interval $0 \leq x \leq \pi$. Calculate a_{0} separately.

$$
f(x)=x
$$

13. Find the temperature $u(t, x)$ in a rod modeled by the initial/boundary value problem

$$
\begin{aligned}
& u_{t}=0.03 u_{x x}, \quad \text { for } t>0,0<x<\pi, \\
& u_{x}(0, t)=u_{x}(\pi, t)=0, \quad \text { for } t>0, \\
& u(x, 0)=x, \quad \text { for } 0 \leq x \leq \pi
\end{aligned}
$$

You may use results obtained in the previous problem.

