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Abstract. We consider a general methodology for parameter identification in systems of
reaction-diffusion equations. To demonstrate the method we focus on the classic Gierer-Meinhardt
reaction-diffusion system. The original Gierer-Meinhardt model [A. Gierer and H. Meinhardt, Ky-
bernetik, 12 (1972), pp. 30-39] was formulated with constant parameters and has been used as a
prototype system for investigating pattern formation in developmental biology. In our paper the
parameters are extended in space and time and used as distributed control variables. The method-
ology employs PDE-constrained optimization in the context of image-driven spatiotemporal pattern
formation. We prove the existence of optimal solutions, derive an optimality system, and determine
the optimal solutions. The results of some numerical experiments in 2-D are presented using the
finite element method, which illustrates the convergence of a variable-step gradient algorithm for
finding the optimal parameters of the system.
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1. Introduction. Many processes in the applied sciences can be adequately
modeled by partial differential equations [13]. However, it is not always possible
to measure or calculate the model parameters with the necessary accuracy, partic-
ularly in living organisms. In these cases mathematical techniques for estimating
model parameters become important. Parameter estimation is also an important
technique for identifying redundant parameters (and hence the key parameters) in
complex systems with many parameters. The need to identify parameters in evolu-
tion equations arises in many disciplines, including biology, physics, engineering, and
chemistry. A considerable amount of research has been devoted to the development of
computational methods for estimating parameters in such equations (see, for example
[3, 2, 1, 4, 5, 9, 12, 19, 34] and the references therein). The typical procedure involves
integrating the evolution equation to obtain a simulation result that is compared to
an observed data set, and then the application of least squares techniques to minimize
a cost functional with respect to parameters in an admissible set [1].

In this paper we consider a methodology for parameter identification in nonlin-
ear reaction-diffusion (RD) equations. There are relatively few works that focus on
parameter identification for RD equations, which is a fertile and growing area of re-
search with many applications, for example, population dynamics [10, 22], synaptic
transmission at a neuromuscular junction [8], color negative film development [14],
chemotaxis [11], epidemiology [21], and brain tumor growth [20].

Traditional studies of RD equations have focussed on models with spatially homo-
geneous parameters. In reality, parameters often operate in spatially heterogeneous
environments. A number of previous authors have considered RD models with spa-
tially varying parameters (see, for example [6, 24, 27, 28]), but to our knowledge none
allow the parameters to vary freely in time. By relaxing this assumption, and allowing
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the parameters to vary in space and time, we develop an image-driven methodology
for parameter identification in RD equations with broad applicability.

For concreteness, we illustrate our method by considering the identification prob-
lem for the two-component activator-inhibitor system of RD equations introduced by
Gierer and Meinhardt [17] for pattern formation. The original formulation has fixed
parameter values. We consider the more general situation where two key parameters,
µ and α, depend on space x and time t. In non-dimensional form [27] the RD system
has the following form

(1.1)


∂u
∂t = Du∆u+ ru2

v − µ(x, t)u+ r,

∂v
∂t = Dv∆v + ru2 − α(x, t)v,

with non-negative parameters r,Du, and Dv, and non-negative morphogen concen-
trations u(x, t) and v(x, t). ∆ denotes the standard Laplacian operator in two space
dimensions.

(a) (b)

Fig. 1.1: Numerical solutions u of (1.1) at time T = 500 with Dv = 0.27, Du = 9.45 × 10−4,
r = 0.001, α = 100, with (a) µ = 2.5, and (b) µ = 2.5 within a circle of radius 0.9, centre (1, 1), and
µ = 1.5 elsewhere. Spatial discretization step = 0.01. An IMEX Galerkin finite element method with
piecewise linear continuous basis functions was employed with first and second order time-stepping
schemes 1-SBDF and 2-SBDF [30], with time steps 1 × 10−8 and 0.01 respectively. Homogeneous
Neumann boundary conditions were employed. Initial data: u0 and v0 small random perturbations
(±10%) of the steady state solutions.

When the parameters in the Gierer-Meinhardt model are appropriately chosen,
the mechanism of ‘diffusion induced instability’, or Turing mechanism [33], leads to
morphogen concentrations with characteristic regular spacing of peaks and troughs (a
pattern) [17]. When the parameters µ and α are allowed to vary in space it has been
shown that this increases the range and complexity of possible patterns [28]. Typical
numerical solutions of the Gierer-Meinhardt system (1.1) for spatially homogeneous
and inhomogeneous parameters are shown in Figures 1.1(a)-1.1(b).

We comment that the Gierer-Meinhardt model is not based on real kinetics and is
used here for the purpose of illustrating our methodology for parameter identification
in nonlinear RD equations, and thus no biological implications of our results should be
made. The methodology outlined in our paper employs a PDE-constrained optimiza-
tion procedure in the context of image-driven spatiotemporal pattern formation. The
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remainder of the paper has the following structure. In Section 2 the well-posedness
of the direct problem is discussed, while in Section 3 a cost functional is defined that
allows us to setup the inverse problem. In Section 4 we prove the existence of optimal
solutions, derive an optimality system, and determine optimal solutions. In Section 5
the results of a numerical experiment is presented, which illustrates the convergence of
a variable-step gradient algorithm for finding optimal parameters. Finally, in Section
6 we make some conclusions.

2. Well-posedness of the direct problem. Before stating the well-posedness
result for the Gierer-Meinhardt model we need to establish the formal setting and
restate the RD system with appropriate initial and boundary conditions. Let Ω be
a bounded and open subset of Rd, d ≤ 2, and Q := Ω × (0, T ) be the space-time
cylinder. The direct problem is formulated as follows:

Find the morphogen concentrations u(x, t) and v(x, t) such that

∂u

∂t
= Du∆u+

ru2

v
− µ(x, t)u+ r in Q,(2.1a)

∂v

∂t
= Dv∆v + ru2 − α(x, t)v in Q,(2.1b)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω(2.1c)
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T ),(2.1d)

where the fixed parameters r,Du, and Dv are non-negative, and u(x, t) and v(x, t)
are the morphogen concentrations defined for (x, t) ∈ Q. Du and Dv are the diffusion
coefficients of u and v respectively, ∆ =

∑d
i=1 ∂

2/∂x2
i denotes the standard Laplacian

operator in d ≤ 2 space dimensions, and ν denotes the outward normal to ∂Ω, the
boundary of Ω. We assume that µ(x, t) and α(x, t) are bounded, Lipschitz continuous
functions on Q, which we denote by µ, α ∈ Lip (Q), belonging to the set of admissible
parameters:

(2.2) Uad :=
{
{µ, α} : µ, α ∈ Lip(Q), 0 ≤ µ(x, t) ≤ µ1, 0 ≤ α(x, t) ≤ α1

}
,

for all (x, t) ∈ Q and numbers µ1, α1 ∈ R. We assume zero flux of the morphogen
concentrations across the boundary and that the initial concentrations, u0(x), v0(x) ∈
C(Ω), are bounded and nonnegative. It will be convenient to denote the vector of
reaction kinetics by f(u) := (f(u), g(u))T , where u := (u, v)T .

Theorem 2.1. Let µ, α ∈ Lip(Q) and u0(x), v0(x) ∈ C(Ω). Furthermore, assume
that the initial data (u0(x), v0(x)) is in [0,∞)2 for all (or almost every) x ∈ Ω. Then
there exists a unique nonnegative classical solution of the Gierer-Meinhardt RD system
(2.1a)-(2.1d) for all (x, t) ∈ Ω× [0,∞).

Proof. The existence of a unique global classical solution of the system (2.1a)-
(2.1d) follows from [29]. To prove the nonnegativity of solutions observe that the
reaction kinetics satisfy

f(0, v), g(u, 0) ≥ 0 for all u, v ≥ 0,

and the initial data (u0(x), v0(x)) is in [0,∞)2 for all (or almost every) x ∈ Ω. Thus
by a maximum principle (see e.g., [31, Lemma 14.20]) the solution (u(x, t), v(x, t)) lies
in [0,∞)2 for all x ∈ Ω and for all t > 0 for which the solution of (2.1a)-(2.1d) exists.
In other words [0,∞)2 is positively invariant for the system.
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3. Setup of the inverse problem. For the identification or inverse problem we
are given possibly perturbed measurements (u, v) corresponding to the state variables
(u, v) and we must determine µ, α such that (uµ,α, vµ,α) best approximate (u, v).

For given T > 0, u0, v0 ∈ C(Ω), and u, v ∈ L2(Q) (not necessarily a solution of
(2.1a)-(2.1d)), the least-squares approach leads to the minimization problem:

(P) Find (µ∗, α∗) ∈ Uad such that

J(µ∗, α∗) = inf
µ,α∈Uad

J(µ, α),

(P) where the cost functional J is defined by:

J(µ, α) =
1
2

∫ T

0

∫
Ω

(
β1|uµ,α − u|2 + β2|vµ,α − v|2

)
dxdt(3.1)

+
1
2

∫
Ω

(
γ1|uµ,α(x, T )− u(x, T )|2 + γ2|vµ,α(x, T )− v(x, T )|2

)
dx,

(P) with (uµ,α, vµ,α) satisfying (2.1a)-(2.1d).

4. The minimization problem.

4.1. Existence of an optimal solution. We prove the existence of an optimal
solution of the minimization problem (P) when Ω is an open bounded domain with
Lipschitz continuous boundary ∂Ω. We denote the usual L2(Ω) norm by ‖ · ‖.

Proposition 4.1. Given u0, v0 ∈ C(Ω), and u, v ∈ L2(Q), there exists a solution
µ∗, α∗ ∈ Uad and (u∗, v∗) ∈ C([0, T ];L2(Ω)2) ∩ L2(0, T ;H1(Ω)2) of the minimization
problem (P).

Proof. Let (µn, αn, un ≡ uµn,αn , v
n ≡ vµn,αn) be a minimizing sequence to (P),

i.e.,

d = inf
µ,α∈Uad

J(µ, α) ≤
∫ T

0

(
β1

2
‖un − u‖2 +

β2

2
‖vn − v‖2

)
dt(4.1)

+
γ1

2
‖un(T )− u(T )‖2 +

γ2

2
‖vn(T )− v(T )‖2 < d+

1
n
.

This implies that un, vn are bounded in L2(Q) and recall that by (2.2) µn, αn are
bounded in C (Q). Using energy-type estimates we will show that the corresponding
solution (un, vn) is bounded in C([0, T ];L2(Ω)2) ∩ L2(0, T ;H1(Ω)2). More precisely,
consider the system (2.1a)-(2.1b) with the state variables (un, vn) and coefficients
(µn, αn). Recall that in 2 dimensions we have (see e.g. [26]) by the Gagliardo-
Nirenberg inequality

‖w‖L4(Ω) ≤ C‖w‖
1/2
L2(Ω)‖w‖

1/2
H1(Ω) ∀w ∈ H1(Ω).(4.2)

Multiplying the first equation in (2.1a)-(2.1b) by un and the second by vn we obtain
after some calculations

d

dt

(
‖un(t)‖2 + ‖vn(t)‖2

)
+Du‖∇un‖2 +Dv‖∇vn‖2

≤ C
(
‖un‖2(1 + ‖un‖2) + ‖vn‖2(1 + ‖vn‖2)

)
,

where by C we denote a generic constant that is independent of n.
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Using (4.1), the Grönwall lemma, the Aubin lemma (see e.g. [23]) and the Arzelà-
Ascoli theorem we can extract subsequences satisfying

µn → µ∗, αn → α∗ in C(Q),

un → u∗, vn → v∗ weakly in L2(0, T ;H1(Ω))∩
H1(0, T ; (H1(Ω))′) and strongly in
L2(0, T ;L2(Ω)),

un → u∗, vn → v∗ weak-star in L∞(0, T ;L2(Ω)),
un(·, T )→u∗(·, T ), vn(·, T )→v∗(·, T ) weakly in L2(Ω).

(4.3)

By the lower weak semicontinuity of the functional (3.1) we have

J(µ∗, α∗) ≤ lim inf
n→∞

J(µn, αn).(4.4)

Using the weak and strong convergence results in (4.3), we pass to the limit inside the
linear and nonlinear terms in (2.1a)-(2.1b) to show that (u∗, v∗, µ∗, α∗) is a solution
to (2.1a)-(2.1b), which by (4.4) implies that (µ∗, α∗, u∗, v∗) is an optimal solution to
problem (P).

4.2. First-order necessary conditions. We derive the first-order necessary
conditions associated with the optimal control problem (P). If the Gâteaux derivative
of the functional exists, then the optimal solution must satisfy this standard first-order
necessary condition (see, e.g., [32]).

Lemma 4.2. Let u0, v0 ∈ C(Ω). If (u∗, v∗, µ∗, α∗) is an optimal solution and
the functional J(µ∗, α∗) is Gâteaux differentiable, then the necessary condition for
(µ∗, α∗) to be a minimizer of J(µ∗, α∗) is

DJ(µ∗, α∗)
D(µ, α)

· (µ− µ∗, α− α∗) ≥ 0 ∀(µ, α) ∈ Uad .

It is clear that for (µ, α) ∈ Uad the solution (u, v) of (2.1a) - (2.1d) is classical
and hence weak. It is convenient to work in the topology of L2(0, T ;H1(Ω)), which
allows us to use well-known results. We recall that the solution of (2.1a)-(2.1b)
defines a mapping u = uµ,α, v = vµ,α from Uad to L2(0, T ;H1(Ω)), which is Gâteaux
differentiable and thus Lemma 4.2 can be applied.

Lemma 4.3. Let u0, v0 ∈ C(Ω). The map (µ, α) 7→ (uµ,α, vµ,α) from Uad to
L2(0, T ;H1(Ω)2), defined as the solution of (2.1a)-(2.1d), has a Gâteaux derivative
in every direction (µ̂, α̂) in Uad . Furthermore, (û, v̂) = ( du

d(µ,α) ,
dv

d(µ,α) ) · (µ̂, α̂) is the
solution of the problem

ût −Du∆û = r
2uûv + u2v̂

v2
− µ̂u− µû,

v̂t −Dv∆v̂ = 2ruû− α̂v − αv̂,
(4.5)

augmented with zero initial conditions and the homogeneous Neumann boundary con-
ditions.

Proof. Let (µ, α), (µ̂, α̂) be given in Uad . We denote by (uλ, vλ) = (uµ+λbµ,α+λbα,
vµ+λbµ,α+λbα) and (u, v) = (uµ,α, vµ,α) the solutions of (2.1a)-(2.1b) with coefficients
(µ+ λµ̂, α+ λα̂) and (µ, α), respectively. Subtracting these two systems we obtain

(uλ − u)t −Du∆(uλ − u) = r
(u2
λ − u2)v + u2(v − vλ)

vλv
− λµ̂uλ − µ(uλ − u),

(vλ − v)t −Dv∆(vλ − v) = r(u2
λ − u2)− λα̂vλ − α(vλ − v),

(4.6)
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augmented with zero initial conditions and the homogeneous Neumann boundary
conditions. After multiplying the first equation by uλ − u, the second by vλ − v, and
adding, we have

d

2dt
(
‖uλ − u‖2 + ‖vλ − v‖2

)
+Du‖∇(uλ − u)‖2 +Dv‖∇(vλ − v)‖2

=
∫

Ω

(uλ−u)2

(
r
uλ + u

vλ
−µ
)
dx+ r

∫
Ω

(uλ−u)(v−vλ)
u2

vλv
dx− λ

∫
Ω

µ̂uλ(uλ−u)dx

−
∫

Ω

α(vλ − v)2dx+ r

∫
Ω

(uλ − u)(vλ − v)(uλ + u)dx− λ
∫

Ω

α̂vλ(vλ − v)dx

≤ r

vinf
‖uλ+u‖‖uλ−u‖2L4 +

r

v2
inf

‖uλ−u‖L4‖vλ−v‖L4‖u‖2L4 + λ‖µ̂‖‖uλ‖L4‖uλ−u‖L4

+ r‖uλ − u‖L4‖vλ − v‖L4‖uλ + u‖+ λ‖α̂‖‖vλ‖L4‖vλ − v‖L4 ,

where vinf := inf v > 0 for all (x, t) ∈ Ω× [0,∞). Here we use (4.2) in the form

‖u‖L4 ≤ C‖u‖ 1
2 (‖u‖+ ‖∇u‖)

1
2 = C

(
‖u‖2 + ‖u‖‖∇u‖

) 1
2 ≤ C

(
‖u‖+ ‖u‖ 1

2 ‖∇u‖ 1
2

)
,

to obtain

d

dt

(
‖uλ − u‖2 + ‖vλ − v‖2

)
+Du‖∇(uλ − u)‖2 +Dv‖∇(vλ − v)‖2

≤ ‖uλ − u‖2C
(
‖u‖4 + ‖u‖2‖∇u‖2 + ‖uλ‖2 + ‖u‖2 + ‖∇uλ‖2 + 1

)
+ ‖vλ − v‖2C

(
‖u‖4 + ‖u‖2‖∇u‖2 + ‖uλ‖2 + ‖vλ‖2 + ‖∇vλ‖2 + ‖u‖2 + 1

)
+ λ2C

(
‖uλ‖2 + ‖µ̂‖2 + ‖α̂‖2‖vλ‖2 + ‖α̂‖2

)
.

Now (4.3) and the Grönwall lemma yield

‖uλ(t)−u(t)‖2 +‖vλ(t)−v(t)‖2 +
∫ t

0

(
Du‖∇(uλ−u)(τ)‖2 +Dv‖∇(vλ−v)(τ)‖2

)
dτ

≤ Cλ2

∫ T

0

(‖µ̂(t)‖2 + ‖α̂(t)‖2)dt.

(4.7)

We need to prove that

lim
λ→0

‖(uλ − u− λû, vλ − v − λv̂)‖L2(0,T ;H1(Ω)2)

|λ|
= 0.(4.8)

Set ŭ = uλ − u − λû, v̆ = vλ − v − λv̂ so then by (4.5) and (4.6) we see that (ŭ, v̆)
satisfies

ŭt −Du∆ŭ

= r
ŭ(uλ+u)v2+λûv[(uλ−u)v+2u(v−vλ)]+u2vv̆+λu2v̂[v−vλ]

v2vλ
−λµ̂(uλ−u)−µŭ,

v̆t −Dv∆v̆ = r [ŭ(uλ + u) + λû(uλ − u)]− λα̂(vλ − v)− αv̆.
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Now we multiply these equations by ŭ and v̆ respectively, and add to get

d

2dt
(
‖ŭ‖2 + ‖v̆‖2

)
+Du‖∇ŭ‖2 +Dv‖∇v̆‖2

= r

∫
Ω

ŭ2 (uλ + u)
vλ

+ rλ

∫
Ω

ŭ(uλ − u)
û

vλ
+ 2rλ

∫
Ω

ŭ(v − vλ)
uû

vvλ
+ r

∫
Ω

ŭv̆
u2

vvλ

+ rλ

∫
Ω

ŭ[v − vλ]
u2v̂

v2vλ
− λ

∫
Ω

ŭµ̂(uλ − u)−
∫

Ω

µ(x, t)ŭ2

+ r

∫
Ω

ŭv̆(uλ + u) + λr

∫
Ω

v̆(uλ − u)û− λ
∫

Ω

v̆(vλ − v)α̂−
∫

Ω

α(x, t)v̆2

≤ Du

2
‖∇ŭ‖2 +

Dv

2
‖∇v̆‖2

+ C
(
‖ŭ‖2 + ‖v̆‖2

)
(‖uλ‖2 + ‖u‖2 + λ2‖uλ − u‖2‖û‖2 + ‖u‖L4‖v‖L4 + ‖u‖4L4 + 1)

+ λ2
(
‖uλ − u‖2 + ‖∇(uλ − u)‖2 + ‖v − vλ‖2 + ‖∇(v − vλ)‖2

)
×
(
‖û‖2 + ‖µ̂‖2 + ‖α̂‖2

)
+ λ2‖vλ − v‖2‖u‖2L4‖û‖2L4 + λ2‖∇(vλ − v)‖2

+ Cλ
(
‖ŭ‖‖v − vλ‖+ ‖ŭ‖1/2‖∇ŭ‖1/2‖v − vλ‖+ ‖ŭ‖‖v − vλ‖1/2‖∇(v − vλ)‖1/2

+‖ŭ‖1/2‖∇ŭ‖1/2‖v − vλ‖1/2‖∇(v − vλ)‖1/2
)
‖u‖2

C(Q)
‖v̂‖,

and apply the Grönwall lemma

‖ŭ(t)‖2 + ‖v̆(t)‖2 +
∫ t

0

(
Du‖∇ŭ(τ)‖2 +Dv‖∇v̆(τ)‖2

)
dτ

≤Cλ2
(
‖uλ(t)−u(t)‖2+‖vλ(t)−v(t)‖2+

∫ T

0

(
Du‖∇(uλ−u)(t)‖2+Dv‖∇(vλ−v)(t)‖2

)
dt
)
.

Finally from (4.7) we conclude that

‖ŭ(t)‖2 + ‖v̆(t)‖2 +
∫ T

0

(
Du‖∇ŭ(t)‖2 +Dv‖∇v̆(t)‖2

)
dt ≤ Cλ4,

which proves (4.8).

The Gâteaux derivative provides useful information about the sensitivity of the
system at a point (µ, α) in a particular direction (µ̂, α̂), but complete information
requires one to solve (4.5) for every possible direction (µ̂, α̂). However, in order to
minimize the functional we need only an integral over all these directions, which is
obtained via the solution of an adjoint system.

Lemma 4.4. Let u0, v0 ∈ C(Ω), (µ̂, α̂) ∈ Uad and (û, v̂) be defined through (4.5).
For every (F,G) ∈ L2(0, T ;L2(Ω)2) we have

∫ T

0

∫
Ω

(
Fû+Gv̂

)
dxdt = −

∫
Ω

(pû+ qv̂)
∣∣∣T
0
dx−

∫ T

0

∫
Ω

(µ̂up + α̂vq) dxdt
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where (p, q) is the solution of the adjoint problem

−pt −Du∆p−
(

2r
u

v
− µ

)
p− 2ruq = F,

−qt −Dv∆q− ru
2

v2
p + αq = G,

∂p

∂ν
(t, x) =

∂q

∂ν
(t, x) = 0, x ∈ ∂Ω,

p(T, x) = pT (x), q(T, x) = qT (x), x ∈ Ω.

(4.9)

Proof. The left-hand side can be evaluated by (4.9) and (4.5) via integration by
parts, which is justified by the regularity of the quantities involved:∫ T

0

∫
Ω

(
Fû+Gv̂

)
dxdt

=
∫ T

0

∫
Ω

(
−pt −Du∆p−

(
2r
u

v
− µ

)
p− 2ruq

)
û dxdt

+
∫ T

0

∫
Ω

(
−qt −Dv∆q− ru

2

v2
p + αq

)
v̂ dxdt

=
∫ T

0

∫
Ω

(
ût −Du∆û−

(
2r
u

v
− µ

)
û− ru

2

v2
v̂

)
p dxdt

+
∫ T

0

∫
Ω

(v̂t −Dv∆v̂ + αv̂ − 2ruû) q dxdt−
∫

Ω

(pû+ qv̂)
∣∣∣T
0
dx

= −
∫ T

0

∫
Ω

(pµ̂u+ qα̂v)dxdt−
∫

Ω

(pû+ qv̂)
∣∣∣T
0
dx.

Now we show that the optimal parameters µ∗, α∗ are characterized in Lemma 4.2
by the solution of a particular adjoint system.

Theorem 4.5. Let (u∗, v∗, α∗, µ∗) be an optimal solution to problem (P), u, v ∈
C(Ω), and let (p, q) be the solution of the particular adjoint problem

−pt −Du∆p−
(

2r
u∗

v∗
− µ

)
p− 2ru∗q = β1(u∗− u),

−qt −Dv∆q − r
u∗2

v∗2
p+ αq = β2(v∗ − v),

∂p

∂ν
(t, x) = 0,

∂p

∂ν
(t, x) = 0, x ∈ ∂Ω,

p(T, x) = γ1(u∗(T, x)− u(T, x)), q(T, x) = γ2(v∗(T, x)− v(T, x)), x ∈ Ω.

(4.10)

Then we have ∫ T

0

∫
Ω

−u∗p(µ− µ∗)− v∗q(α− α∗)dxdt ≥ 0 ∀(µ, α) ∈ Uad .(4.11)
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Proof. Let (µ∗, α∗) and (u∗, v∗) be an optimal solution of (P). We compute the
Gâteaux derivative of the cost functional J(µ∗, α∗) in the direction of (µ̂, α̂). We have

DJ(µ∗, α∗)
D (µ, α)

· (µ̂, α̂)

=
∫ T

0

∫
Ω

β1(u∗ − u)
(
du∗µ∗,α∗

d(µ, α)
· (µ̂, α̂)

)
+ β2(v∗ − v)

(
dv∗µ∗,α∗

d(µ, α)
· (µ̂, α̂)

)
dxdt

+ γ1

∫
Ω

(u∗(T, x)− u(T, x))
(
du∗µ∗,α∗

d(µ, α)
· (µ̂, α̂)

)
(T, x)dx

+ γ2

∫
Ω

(v∗(T, x)− v(T, x))
(
dv∗µ∗,α∗

d(µ, α)
(µ̂, α̂)

)
(T, x)dx

=
∫ T

0

∫
Ω

(−µ̂u∗p− α̂v∗q) dxdt,

where (
du∗µ∗,α∗

d(µ,α) ,
dv∗µ∗,α∗

d(µ,α) ) is the solution of the sensitivity system (4.5). Now from the
definition of optimality in problem (P), as (u∗, v∗, µ∗, α∗) is an optimal solution and
the Gâteaux derivative of the functional exists, then from Lemma 4.4∫ T

0

∫
Ω

−u∗p(µ− µ∗)− v∗q(α− α∗)dxdt ≥ 0 ∀(µ, α) ∈ Uad ,

which concludes the proof.

5. Numerical results. To illustrate the effectiveness of the image-driven PDE
- constrained optimization procedure, we present numerical results in two space di-
mensions.

For the specific target functions (u, v) in our numerical simulations we chose the
skin patterns of the Emperor Angelfish (Pomacanthus imperator). Our starting point
prior to pre-processing of the image was a high resolution JPEG image ∗†, fitted into
the square [0, 2] × [0, 2]. The original image is initially cropped, which excludes the
portion of the tail with no pattern and the background details. The cropped image is
also used to define the domain Ω. The cropped image is then converted to gray scale
and interpolated onto a fine irregular finite element mesh. This final image constitutes
the target functions for the optimal control algorithm (for further details see [15]).

The spatial discretization of the state equations and adjoint equations were un-
dertaken using a ‘lumped mass’, Galerkin finite element method with piecewise linear
continuous basis functions. For the time discretization it is well-known that several
popular time-stepping schemes for RD equations modeling pattern formation yield
qualitatively poor results [30]. We therefore used a second order, 3-level, implicit-
explicit (IMEX) scheme (2-SBDF) recommended by Ruuth in [30] as a good choice
for most RD problems for pattern formation. IMEX schemes use an implicit discretiza-
tion of the diffusion term, and an explicit discretization of the reaction terms. As the
scheme 2-SBDF involves three time levels we need to ‘kick-start’ the approximation
at the first time level, which we did using a first order IMEX scheme (1-SBDF) with
a small time step [30]. The resulting sparse linear systems were solved in MATLAB
(R2007a) using the GMRES iterative solver.

∗1050× 750 (3.5in by 2.5in at 300ppi)
†Copyright Robert Fenner, WetWebMedia.com
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To approximate the inverse problem we apply a variable-step gradient algorithm
[7, 18, 16] yielding a sequence of discrete approximations {(uk, vk), (µk, αk)}k∈N to the
optimal solutions (u∗, v∗) and optimal parameters (µ∗, α∗). The sensitivities of the
system (2.1a)-(2.1b) and cost functional (3.1) with respect to the parameters (µ, α) are
used to compute the Lagrange multipliers, satisfying the adjoint system that marches
backward in time. The Lagrange multipliers are then used in the variable step gradient
algorithm to minimize the cost functional. The implementation is straightforward,
although computationally intensive. The bulk of the computational cost is in the
backward-in-time solution of the adjoint system and the forward-in-time solution of
the state system.

We used a nonuniform triangulation Ωh of the angelfish domain Ω with 17,904
nodes and 35,280 triangles, and numerically solved the optimal control problem up-
to time T = 10 with uniform time steps ∆t = 1 × 10−8 (1-SBDF) and ∆t = 0.01
(2-SBDF). Figure 5.1 shows a snapshot at T = 10 of the optimal solution u, the
target function ū, and the optimal parameters α and µ (see the caption for parameter
values). For further details concerning the fully-discrete optimality system see Section
7.2 in the Appendix.

(a) (b)

(c) (d)

Fig. 5.1: (a) Optimal solution u, (b) stationary target function ū, (c) optimal parameter α, and (d)
optimal parameter µ, at time T = 10. Parameter values: Du = Dv = 0.01, r = 10, β1 = 0, β2 = 0,
γ1 = 1, γ2 = 0, δ1 = 1× 10−6, δ2 = 1× 10−6. Initial data: µ = 3, α = 30, u0 and v0 small random
perturbations (±10%) of the steady state solutions. Time steps: 1×10−8 (1-SBDF), 0.01 (2-SBDF).
Mesh: 17904 nodes and 35280 triangles.
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6. Conclusions. In this paper we outlined a general method for parameter
identification in nonlinear reaction-diffusion equations based on a PDE-constrained
image-driven optimization procedure (optimal control problem). For concreteness we
focussed on the classic Gierer-Meinhardt reaction-diffusion system for pattern for-
mation, with two distributed control parameters depending on space and time. For
the target functions we employed a (pre-processed) image of a marine angelfish. The
mathematical formulation, analysis, and numerical solution of the optimal control
problem was presented. After undertaking the mathematical analysis of the optimal
control problem, numerical solutions were obtained with the aid of a semi-implicit,
Galerkin finite element method with piecewise linear continuous basis functions. The
time-stepping procedure was based on a 2nd order, 3-level, implicit-explicit (IMEX)
scheme. The numerical results illustrated the success of a variable step gradient
algorithm to identify the parameters needed to drive the solution patterns of the
Gierer-Meinhardt system close to the skin patterns of a marine angelfish. The po-
tential biological applications of our methodology are discussed in a separate paper
[15].

7. Appendix.

7.1. Modified cost functional. For computational convenience we modified
the cost functional (3.1) to take into account the ‘cost of control’, which is a practical
means of limiting the growth of the distributed control parameters:

Jδ1,δ2(µ, α) =
1
2

∫ T

0

∫
Ω

(
β1|uµ,α − u|2 + β2|vµ,α − v|2

)
dxdt(7.1)

+
1
2

∫
Ω

(
γ1|uµ,α(x, T )− u(x, T )|2 + γ2|vµ,α(x, T )− v(x, T )|2

)
dx,

+
1
2

∫ T

0

∫
Ω

(
δ1µ

2 + δ2α
2
)
dxdt.

The corresponding minimization problem becomes

(P) Find (µ∗, α∗) ∈ Uad such that

Jδ1,δ2(µ∗, α∗) = inf
µ,α∈Uad

Jδ1,δ2(µ, α),

(P) where the cost functional Jδ1,δ2 is defined by (7.1),
(P) with (uµ,α, vµ,α) satisfying (2.1a)-(2.1d).

It is straightforward to prove that Proposition 4.1 still holds, while the conclusion
of Theorem 4.5 gives an explicit form for the optimal solution:

µ∗ =
1
δ1
u∗p, α∗ =

1
δ2
v∗q.

Here (p, q) is a solution to the adjoint problem (4.10).

7.2. Fully discrete optimality system. In order to construct stable finite
element approximations, we introduce the following regularized version of (2.1a)-
(2.1b):

(7.2)


∂uε
∂t = Du∆uε + ru2

ε

vε+εu2
ε+ε
− µ(x, t)uε + r,

∂vε
∂t = Dv∆vε + ru2

ε

1+εu2
ε
− α(x, t)vε,
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where ε is a small parameter. In subsequent calculations we drop the subscript of
ε from u and v (and their discretized counterparts) for notational convenience. The
global existence and uniqueness of the classical solutions of this regularized system
follows in a straightforward manner from the theoretical framework of Morgan [25].

We introduce Sh, the standard Galerkin finite element space

Sh := {v ∈ C(Ω) : v|τ is linear ∀τ ∈ Ωh} ⊂ H1(Ω).

Let {xi}Ji=0 be the set of nodes of the triangulation. We introduce πh : C(Ω) 7→ Sh,
the Lagrange interpolation operator, such that πhv(xj) = v(xj) for all j = 0, . . . J . In
order to define the finite dimensional weak forms of the reaction-diffusion system we
define a discrete L2 inner product on C(Ω) given by (u, v)h :=

∫
Ω
πh(u(x)v(x)) dx,

which approximates the usual L2 inner product (u, v).

The fully discrete, first order scheme of system (7.2) for the first time step is given
by the following problem: for µ(0)

h , α
(0)
h ∈ Lip(Ω) find u

(1)
h , v

(1)
h ∈ Sh satisfying

1
∆t

(
u

(1)
h − u

(0)
h , χh

)h
+Du

(
∇u(1)

h ,∇χh
)

(7.3)

=

(
r|u(0)

h |2

|v(0)
h |+ ε|u(0)

h |2 + ε
− µ(0)

h u
(0)
h + r, χh

)h
,

1
∆t

(
v

(1)
h − v

(0)
h , χh

)h
+Dv

(
∇v(1)

h ,∇χh
)

=

(
r|u(0)

h |2

1 + ε|u(0)
h |2

− α(0)
h v

(0)
h , χh

)h
,

for all χh ∈ Sh, with initial densities u(0)
h = πhu0(x), v(0)

h = πhv0(x). The fully
discrete, second order scheme of system (7.2) is given by the following problem: for
µ

(n−1)
h , µ

(n)
h , α

(n−1)
h , α

(n)
h ∈ Lip(Ω) find u

(n+1)
h , v

(n+1)
h ∈ Sh satisfying

1
2∆t

(
3u(n+1)

h − 4u(n)
h + u

(n−1)
h , χh

)h
+Du

(
∇u(n+1)

h ,∇χh
)

(7.4)

=

(
2r|u(n)

h |2

|v(n)
h |+ ε|u(n)

h |2 + ε
−

r|u(n−1)
h |2

|v(n−1)
h |+ ε|u(n−1)

h |2 + ε

− 2µ(n)
h u

(n)
h + µ

(n−1)
h u

(n−1)
h + r, χh

)h
,

1
2∆t

(
3v(n+1)
h − 4v(n)

h + v
(n−1)
h , χh

)h
+Dv

(
∇v(n+1)

h ,∇χh
)

=

(
2r|u(n)

h |2

1 + ε|u(n)
h |2

−
r|u(n−1)

h |2

1 + ε|u(n−1)
h |2

− 2α(n)
h v

(n)
h + α

(n−1)
h v

(n−1)
h , χh

)h
,

for all χh ∈ Sh, n = 1, 2, . . . , N , with initial densities u(0)
h = πhu0(x), v(0)

h = πhv0(x).
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The discrete cost functional used in the optimal control problem is given by

JN =
∆t
2

N∑
n=1

(
β1‖u(n)

h − u(n)
h ‖

2
0 + β2‖v(n)

h v
(n)
h ‖

2
0

)
(7.5)

+
1
2

(
γ1‖u(N)

h − u(N)
h ‖20 + γ2‖v(N)

h − v(N)
h ‖20

)
+
δ1 ·∆t

2

N∑
n=1

‖µ(n)
h ‖

2
0 +

δ2 ·∆t
2

N∑
n=1

‖α(n)
h ‖

2
0.

Thus we can formulate the fully discrete optimal control problem as:

(Ph,∆t) Given ∆t = T/N , h = L/J , u0, v0 ∈ H1(Ω) ∩ L∞(Ω) and
ū, v̄ ∈ L2(Q), find (u(n)

h , v
(n)
h , µ

(n)
h , α

(n)
h ) ∈ Sh × Sh × Sh × Sh

such that (7.3)-(7.4) is satisfied for n = 1, 2, . . . , N and the cost
functional (7.5) is minimized.

To complete the fully discrete optimality system we also need the following fully
discrete adjoint system: The adjoint functions p(n)

h , q
(n)
h ∈ Sh satisfy for the first time

step

1
2∆t

(
2p(0)
h − 4p(1)

h + p
(2)
h , χh

)h
+Du

(
∇p(0)

h ,∇χh
)

(7.6)

=

((
r

2u(1)
h (|v(1)

h |+ ε)

(|v(1)
h |+ ε|u(1)

h |2 + ε)2
− µ(1)

h

)
· (2p(1)

h − p
(2)
h ), χh

)h

+

(
2ru(1)

h

1 + ε|u(1)
h |2

· (2q(1)
h − q

(2)
h ) + β1(u(1)

h − u
(1)
h ), χh

)h
,

1
2∆t

(
2q(0)
h − 4q(1)

h + q
(2)
h , χh

)h
+Dv

(
∇q(0)

h ,∇χh
)

=

(
r
|u(1)
h |2sign(v(1)

h )

(|v(1)
h |+ ε|u(1)

h |2 + ε)2
· (−2p(1)

h + p
(2)
h ), χh

)h
+
(
α

(1)
h (−2q(1)

h + q
(2)
h ) + β2(v(1)

h − v
(1)
h ), χh

)h
,

and for n = 2, . . . , N − 2 we have

1
2∆t

(
3p(n−1)
h − 4p(n)

h + p
(n+1)
h , χh

)h
+Du

(
∇p(n−1)

h ,∇χh
)

(7.7)

=

((
r

2u(n)
h (|v(n)

h |+ ε)

(|v(n)
h |+ ε|u(n)

h |2 + ε)2
− µ(n)

h

)
· (2p(n)

h − p(n+1)
h ), χh

)h

+

(
2ru(n)

h

1 + ε|u(n)
h |2

· (2q(n)
h − q(n+1)

h ) + β1(u(n)
h − u(n)

h ), χh

)h
,
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1
2∆t

(
3q(n−1)
h − 4q(n)

h + q
(n+1)
h , χh

)h
+Dv

(
∇q(n−1)

h ,∇χh
)

=

(
r
|u(n)
h |2sign(v(n)

h )

(|v(n)
h |+ ε|u(n)

h |2 + ε)2
· (−2p(n)

h + p
(n+1)
h ), χh

)h
+
(
α

(n)
h (−2q(n)

h + q
(n+1)
h ) + β2(v(n)

h − v(n)
h ), χh

)h
,

and for n = N − 1 we have

1
2∆t

(
3p(N−2)
h − 4p(N−1)

h , χh

)h
+Du

(
∇p(N−2)

h ,∇χh
)

(7.8)

=

((
r

2u(N−1)
h (|v(N−1)

h |+ ε)

(|v(N−1)
h |+ ε|u(N−1)

h |2 + ε)2
− µ(N−1)

h

)
· (2p(N−1)

h − 2p(N)
h ), χh

)h

+

(
2ru(N−1)

h

1 + ε|u(N−1)
h |2

· (2q(N−1)
h − q(N)

h ) + β1(u(N−1)
h − u(N−1)

h ), χh

)h
,

1
2∆t

(
3q(N−2)
h − 4q(N−1)

h , χh

)h
+Dv

(
∇q(N−2)

h ,∇χh
)

=

(
r
|u(N−1)
h |2sign(v(N−1)

h )

(|v(N−1)
h |+ ε|u(N−1)

h |2 + ε)2
· (−2p(N−1)

h + p
(N)
h ), χh

)h
+
(
α

(N−1)
h (−2q(N−1)

h + q
(N)
h ) + β2(v(N−1)

h − v(N−1)
h ), χh

)h
,

and for n = N we have

1
2∆t

(
3p(N−1)
h −2p(N)

h , χh

)h
+Du

(
∇p(N−1)

h ,∇χh
)

= β1

(
u

(N)
h −u(N)

h ), χh
)h
,(7.9)

1
2∆t

(
3q(N−1)
h −2q(N)

h , χh

)h
+Dv

(
∇q(N−1)

h ,∇χh
)

= β2

(
v

(N)
h −v(N)

h ), χh
)h
,

supplemented with the final conditions:

p
(N)
h = γ1(u(N)

h − u(N)
h ), q

(N)
h = γ2(v(N)

h − v(N)
h ).(7.10)

Theorem 7.1. If {u(n)
h , v

(n)
h }Nn=0 and {α(n)

h , µ
(n)
h }Nn=0 are optimal for the problem

(7.3)-(7.4), (7.5), then there exist {p(n)
h , q

(n)
h }Nn=0 satisfying (7.6)-(7.10) such that,

for n = 1, . . . , N − 2:

α
(n)
h =

v
(n)
h

δ2
(2q(n)

h − q(n+1)
h ), µ(n)

h =
u

(n)
h

δ1
(2p(n)

h − p(n+1)
h ),

for n = N − 1:

α
(N−1)
h =

2v(N−1)
h q

(N−1)
h

δ2
, µ

(N−1)
h =

2u(N−1)
h p

(N−1)
h

δ1
,

and for n = N : α
(N)
h = µ

(N)
h = 0.

For a proof see [16], which covers the numerical analysis of the work presented in
this paper.
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