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Abstract 

Spike-timing-dependent plasticity (STDP) has been suggested to play a role in the 

development of functional neuronal connections. However, for STDP to contrib-

ute to the synaptic organization, its learning curve should satisfy a requirement 

that the magnitude of long-term potentiation (LTP) is approximately the same as 

that of long-term depression (LTD). Without such balance between LTP and 

LTD, all the synapses are potentiated toward the upper limit or depressed toward 

the lower limit. Therefore, in this study, we explore the mechanisms by which the 

LTP/LTD balance in STDP can be modulated adequately. We examine a plasticity 

model that incorporates an activity-dependent feedback (ADFB) mechanism, 

wherein LTP induction is suppressed by higher postsynaptic activity. In this 

model, strengthening an ADFB function gradually decreases the temporal average 

of the ratio of the magnitude of LTP to that of LTD, whereas enhancing back-

ground inhibition augments this ratio. Additionally, correlated inputs can be 

strengthened or weakened depending on whether the correlation time is shorter or 

longer than a threshold value, respectively, suggesting that STDP may lead to 

either Hebbian or anti-Hebbian plasticity outcomes. At an intermediate range of 

correlation times, the reversal between the two distinct plasticity regimes can oc-

cur by changing the level of ADFB modulation and inhibition, providing a 

physiological mechanism for neurons to select from functionally different forms 

of learning rules. 
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1. Introduction 

Activity-dependent modification of synaptic transmission, including long-term 

potentiation (LTP) and long-term depression (LTD), has been widely thought to 

underlie learning and memory (Bi & Poo, 2001). Although there are various forms 

of plasticity, recent experiments have revealed that the induction of both LTP and 

LTD can depend on the relative timing of pre- and postsynaptic spikes (Bi & Poo, 

1998; Feldman, 2000; Froemke et al. 2005; Abbott & Nelson, 2000; Caporale & 

Dan, 2008). In the spike-timing-dependent plasticity (STDP) observed in the neo-

cortical cells, LTP is induced when the presynaptic spike occurs before the post-

synaptic spike, while the reversed spike order elicits LTD (Feldman, 2000; 

Froemke et al. 2005).  

STDP learning rule has been suggested to solve a fundamental problem of un-

bounded synaptic strengthening in Hebbian learning (Song et al., 2000; Song & 

Abbott, 2001). Hebbian rule of plasticity contributes to the formation of func-

tional circuits and has been used in many neural network studies (Bienenstock et 

al., 1982; Miller et al., 1989; von der Malsburg, 1973). However, this plasticity 

rule predicts that when presynaptic inputs are strengthened, the resulting increased 

postsynaptic activity further strengthens the inputs. Such positive feedback will 

lead to unlimited growth of synapses, producing instability in the learning dynam-

ics (Miller, 1996). An advantage of STDP is that it can automatically introduce 

competitive interaction among inputs to stabilize the postsynaptic activity, while 

maintaining the basic properties of the Hebbian learning (Abbott & Nelson, 2000; 

Song et al., 2000). Such competition arises from STDP because the inputs that 

contribute to rapidly evoking the postsynaptic spikes are potentiated, while the 

others that do not contribute to it are depressed. However, to achieve such com-

petitive function, the magnitude of LTP and LTD in the STDP learning curve 

should be approximately balanced (Song et al., 2000). When LTP dominates over 

LTD, all the synapses are potentiated. Conversely, if LTD dominates over LTP, 

all the synapses are depressed. The fact that synaptic modification dynamics is 

quite sensitive to the change in the balance between LTP and LTD (Song et al., 

2000) may suggest that STDP should be accompanied by an additional mecha-

nism that controls this balance within an adequate range. 

Therefore, in this study, we construct a simplified cortical pyramidal neuron 

model and examine the possible mechanism by which the balance between LTP 
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and LTD in the STDP learning rule can be regulated. Based on the evidence that 

LTP in STDP depends on postsynaptic NMDARs (Bender et al., 2006; Egger et 

al., 1999; Nevian & Sakmann, 2006), which desensitize via the activity-dependent 

elevation of intracellular Ca2+ (Legendre et al., 1993; Medina et al., 1999; Rosen-

mund et al., 1995), we examine an STDP model, wherein the magnitude of LTP is 

dynamically modified by such activity-dependent feedback (ADFB) mechanism 

(Tegnér & Kepecs, 2002; Kubota & Kitajima, 2009). We show that in this model, 

the temporal average of the LTP/LTD ratio can be gradually increased or de-

creased by enhancing the background inhibition or strengthening the feedback 

function, respectively. In addition, we demonstrate that in the presence of the 

ADFB function, but not in the absence, input correlations function to potentiate or 

depress a group of correlated inputs depending on the time scale of the input cor-

relation. Furthermore, in an intermediate range of correlation time, the modulation 

of the strength of ADFB as well as of inhibition can regulate whether the corre-

lated inputs become strengthened or weakened by STDP, providing neurons with 

the ability to govern the direction of the input correlation-based plasticity. 
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2. Methods 

2.1. Neuron Model 

We used a conductance-based pyramidal neuron model consisting of two com-

partments representing a soma and a dendrite (Kubota & Kitajima, submitted). 

Both the somatic and dendritic compartments contain voltage-dependent Na+/K+ 

currents ( NaI and KI ). A voltage-gated Ca2+ current ( CaI ) and a Ca2+-dependent 

potassium current ( AHPI ) are incorporated into the dendrite to reproduce spike 

frequency adaptation found in pyramidal cells (Ahmed et al., 1998). The ampli-

tude as well as the kinetic parameters for the voltage-gated currents and AHPI  

have been adjusted such that the model neuron exhibits instantaneous and adapted 

f-I curves similar to those of neocortical pyramidal cells (Kubota & Kitajima, 

submitted).  

 

2.2. Synaptic Currents 

The dendritic compartment receives 4000 excitatory and 800 inhibitory synapses, 

each of which follows the conductance-based model given by Kubota and Kita-

jima (2008) (Fig. 1A). The level of inhibitory inputs is assumed to depend on a 

parameter inhg , which represents the peak conductance of GABA-mediated syn-

aptic currents (Kubota & Kitajima, 2008). All the synapses are activated by Pois-

son processes. The use of Poisson inputs is based on the experimental finding that 

the spike trains of in vivo cortical cells is highly irregular (Softky & Koch, 1993). 

Excitatory synapses are activated by either uncorrelated spike trains or two groups 

of spike trains consisting of correlated and uncorrelated ones, while inhibitory 

synapses are activated by uncorrelated spike trains. All the uncorrelated inputs 

were generated using independent Poisson spike trains of 3Hz. Taking into ac-

count a relatively lower success rate of synaptic transmission in central synapses 

(~10%) (Hessler et al., 1993), this input rate corresponds to a presynaptic firing 

rate of ~30 Hz, which is in the physiologically plausible range for the sensory-

evoked responses of cortical neurons. In cases where the input correlation is con-

sidered (Figs. 5 and 6), excitatory synapses are assumed to consist of two equally 

sized groups (2000 for each group) and one group of synapses is activated by cor-

related spike trains, while the other group is activated by uncorrelated spike trains 

(Song & Abbott, 2001). The presynaptic firing rates for the correlated inputs are 

generated to have a correlation function that decays exponentially with a time 
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constant c  (correlation time) (Song et al., 2000; Song & Abbott, 2001). The 

mean (temporally-averaged) firing rate for the correlated inputs is the same as that 

for the uncorrelated inputs (3 Hz).  

 

2.3. Synaptic Weight Modification by STDP 

STDP is assumed to act on all the excitatory synapses. We denote by t  = postt –

pret  the time lag between the pre- and postsynaptic events; positive numbers of  

t  imply that the presynaptic event preceded the postsynaptic event. The change 

in the synaptic weight w  is described as follows (Song et al., 2000) (Fig. 1B): 

 
exp( / ), for 0,

exp( / ), for 0,

A t t
w

A t t




 

 

  
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     (1) 

where A (> 0) and A  (= 0.004) determine the magnitude of synaptic potentia-

tion and depression, respectively, and   =   = 20 ms determines the temporal 

range over which synaptic strengthening and weakening occur. When a pre- or 

postsynaptic event occurs, the synaptic weights w are modified stepwise by an 

additive updating rule of STDP. The effects of all the pre- and postsynaptic spike 

pairs are linearly summed. Upper and lower bounds ( maxw  and 0, respectively) 

are imposed on each synaptic weight to stabilize learning dynamics. 

 

2.4. Activity-Dependent Modulation of LTP 

Recent experiments examining STDP (Bender et al., 2006; Egger et al., 1999; 

Nevian & Sakmann, 2006) have revealed that LTP and LTD involve distinct sig-

naling pathways that may act as coincidence detectors of pre- and postsynaptic 

events: the activation of postsynaptic NMDA receptors (NMDARs) for LTP and 

that of metabotropic glutamate receptors (mGluRs) for LTD. Further, NMDARs 

have been shown to exhibit intracellular Ca2+-dependent desensitization (Legen-

dre et al., 1993; Medina et al., 1999; Rosenmund et al., 1995), suggesting that 

LTP, but not LTD, will be suppressed by sustained postsynaptic activity level that 

results in the accumulation of intracellular Ca2+ (Helmchen et al., 1996; Svoboda 

et al., 1997). Therefore, we consider an activity-dependent feedback (ADFB) of 

plasticity such that increased postsynaptic activity decreases the magnitude of 

LTP: 0( ) ( )postA t A kf t   , where ( )postf t  is the postsynaptic firing rate at time 
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t; 0A  is the magnitude of LTP when the postsynaptic neuron is almost quiescent 

(i.e., 0postf  ); and k  (/Hz) is a positive parameter (see below). 

Additionally, a line of evidence suggests that the strength of Ca2+-dependent 

desensitization of NMDARs may be controlled in cortical neurons. Functional 

NMDARs are composed of NR1 and NR2 (NR2A–NR2D) subunits in the fore-

brain (Stephenson, 2001). NR2B-containing NMDARs are predominantly ex-

pressed in neonatal neurons, whereas the number of NR2A-containing NMDARs 

increases over postnatal development (Quinlan et al., 1999a, 1999b). Since the 

NR2A- but not NR2B-containing NMDARs exhibit Ca2+-dependent desensitiza-

tion (Krupp et al., 1996), the desensitization can be expected to be facilitated 

through the NMDAR subunit switch. Moreover, the expression pattern of distinct 

NR2 subunits is modulated depending on the neuronal activity or the neurotrophin 

level (Quinlan et al., 1999a, 1999b; Caldeira et al., 2007), implying that NMDAR 

subunit composition can change across different conditions. Therefore, to incor-

porate the effects of changes in NMDAR subunit expression into our model, we 

define a non-dimensional parameter   (0  1) such that   = 0 denotes the 

state where the NR2B subunits are predominant, as in the case of very immature 

neurons, whereas   = 1 represents the state where the NR2A subunits are fully 

expressed, as in mature neurons. Then, if we denote by maxk  the maximum value 

of the feedback gain parameter k  provided by the NR2A-containing NMDARs, 

the ADFB modulation of the magnitude of LTP (Fig. 1B) can be described as  

 0
max( ) ( )postA t A k f t   .       (2) 

Here, the postsynaptic firing rate at each time point was calculated by ( )postf t  = 

0
exp( ) ( )postS t d   


  , with the output spike train represented by 

( ) ( )
post

post postt
S t t t   and   = 0.1 /s (Tanabe & Pakdaman, 2001). The pa-

rameter values used in the ADFB function itself are 0A  = 0.008 and maxk  = 

0.068 ms. 
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3. Results 

3.1. Impact of LTP/LTD Balance on Learning Dynamics by STDP 

To investigate how the LTP/LTD balance in the STDP curve affects learning dy-

namics, we examined the equilibrium properties of STDP (i.e., the state where the 

synaptic weights converge to a stationary distribution) for various values of the 

LTP size A  without ADFB (i.e.,  = 0). In Fig. 2, we plotted the average 

weight (Fig. 2A) and the mean firing rate of the neuron (Figs. 2B and 2C) as func-

tion of the A / A  ratio for three different values of inhibitory conductance inhg . 

The figure shows that the equilibrium state of STDP changes abruptly over a 

small range of A / A  (Song et al., 2000; Rubin et al., 2001): if A / A  is 

slightly greater than 1, the synaptic weights are increased toward the upper limit 

so that the postsynaptic firing rate becomes much higher. Conversely, if A / A  

becomes less than 0.98, the synapses are strongly depressed and, therefore, the 

postsynaptic activity becomes much lower. On the other hand, the increased level 

of inhibition (larger inhg ) can gradually decrease the postsynaptic activity for all 

values of A / A   (Figs. 2B and 2C). The finding that the neuronal activity is 

drastically changed in a very narrow range of A / A  (Fig. 2C) implies that to 

regulate neuronal activity adequately, the LTP/LTD ratio should also be precisely 

controlled.  

To explore the possibility that the ADFB mechanism (Eq. 2) regulates the 

LTP/LTD ratio, we simply take the temporal average of Eq. 2 to obtain the fol-

lowing relationship: 

 0/ ( ) / ( )postA A t A A f t     ,     (3) 

with max /k A   . Here, 1( ) ( )
t T

t
x t T x t dt

     (T >> 1) represents the tempo-

rally averaged value of ( )x t . Therefore, / ( )A A t   is the temporal mean of the 

LTP/LTD ratio and  ( )postf t  is the mean firing rate of the postsynaptic neuron. 

The relationship between / ( )A A t    and ( )postf t  in Eq. 3 was plotted, for 

given values of  , as shown in Figs. 2B and 2C (thin lines). If the temporal fluc-

tuation of A / A  is not so large, it might be expected that the values of 

/ ( )A A t   and ( )postf t  obtained by STDP, in the presence of ADFB modulation, 
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would correspond to the intersection point between 2 different curves—the line 

representing Eq. 3 for a given   (thin lines) and the postsynaptic rate vs. 

/A A   curve (thick lines) for a given inhg —in Fig. 2B. 

Note that the increase in the strength of ADFB modulation (larger  ) will 

move the intersection point such that the value of /A A   at this point becomes 

slightly decreased, as can be seen from Fig. 2B. This implies the possibility that 

by changing the parameter  , the mean value of the /A A   ratio at the equilib-

rium of STDP might be gradually modified within a very small range of /A A   

~ 1. Moreover, Fig. 2B also indicates that the enhanced inhibition (larger inhg ) 

would shift the position of the intersection point so that the /A A   ratio be-

comes slightly increased. Therefore, in the following section, we examine how the 

changes in the strength of the ADFB mechanism, as well as the background inhi-

bition level, can regulate the LTP/LTD balance in the STDP curve and thereby 

influence the learning dynamics. 

 

3.2. Control of the LTP/LTD Balance through ADFB and Inhibitory Mecha-

nisms 

To explore the role of the ADFB function and inhibition in controlling the 

LTP/LTD balance, we investigated the equilibrium properties of STDP in the 

presence of ADFB modulation for various values of   and inhg . Since the ran-

dom synaptic activation, as well as the temporal variation in the synaptic distribu-

tion, produces fluctuation in the firing activity, the time course of the /A A   

ratio is irregular even at the equilibrium (Fig. 3). However, as the ADFB modula-

tion is facilitated by increasing  , the temporally averaged value of the /A A   

ratio was found to converge to a value slightly smaller than 1 (Figs. 4A and 4B), 

as predicted in Fig. 2B (Tegnér & Kepecs, 2002). In the presence of this approxi-

mate balance in LTP and LTD, a small reduction in the /A A   ratio considera-

bly decreases the average weight as well as the postsynaptic firing rate (Figs. 4C 

and 4D) (Song et al., 2000). Therefore, the strengthening of ADFB by a further 

increase in   is counterbalanced by the weakening of the postsynaptic activity, 

and the temporal average of /A A   decreases very gradually with increasing   

(Fig. 4B) (Kubota & Kitajima, submitted).  
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On the other hand, changing inhg  does not significantly affect the postsynaptic 

firing rate for larger   (   > 0.4) (Fig. 4D). Instead, stronger inhibition aug-

ments the average weight via a small increase in the LTP/LTD ratio (Figs. 4B and 

4C). This finding suggests that our model exhibits a strong regulatory function 

that maintains the excitatory-inhibitory balance through the precise control of the 

LTP/LTD balance. Furthermore, the coefficient of variation (CV) for the inter-

spike intervals (ISIs) in the output spike train was found to increase with   and 

inhg  in the range of larger   values (Fig. 4E). The higher ISI variability caused 

by the enhanced inhibition is attributable to the fact that larger inhg  increases the 

average synaptic weight (Fig. 4C). This effect reduces the number of excitatory 

inputs needed to reach the threshold voltage and prevent the temporal integration 

of inputs from producing regular firing pattern (Softky & Koch, 1993). Although 

larger   acts to weaken the synapses (Fig. 4C), this effect will be overcome by 

decreasing the postsynaptic firing rate (Fig. 4D); since, at lower firing rates, the 

effective passive decay for the membrane voltage is increased, the neuron will 

behave as a coincidence detector and thereby can produce an irregular firing pat-

tern (Liu & Wang, 2001). 

Additionally, as shown in Figs. 4B and 4D (open symbols), we plotted the val-

ues of /A A   and the postsynaptic firing rate corresponding to the intersection 

points shown in Fig. 2B (see Sec. 3.1), which were calculated by performing the 

linear interpolation of the firing rate vs. /A A   relationship for each inhg  (thick 

lines in Fig. 2B). Figures 4B and 4D indicate that the results obtained by the nu-

merical simulation with the ADFB mechanism (closed symbols) show very good 

agreement with those predicted by this intersection argument (open symbols).  

 

3.3. ADFB modulation in the presence of correlated inputs 

The above results suggest that ADFB may provide STDP with a strong regulatory 

function such that the postsynaptic firing rate is kept almost constant for a given 

value of  (Fig. 4D). To examine how such regulatory action affects learning 

dynamics in the presence of correlated inputs, we divided synapses into two 

equally-sized groups and introduced correlation into one of them (Song & Abbott, 

2001; see Methods). The other group remained uncorrelated so that we could 

compare the effects of ADFB on the correlated and uncorrelated inputs. 
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Physiological experiments examining correlated neuronal activity suggest that 

the time scale of correlation ranges widely from milliseconds to seconds (Mastro-

narde, 1983; Bach & Kruger, 1986; Brivanlou et al., 1998; Lampl et al., 1999; 

Bair et al., 2001; Reich et al., 2001; Kohn & Smith, 2005); the sharing of the same 

afferent inputs produces correlated spiking on a millisecond time scale (Mastro-

narde, 1983), whereas the temporal variation in firing activity caused by changing 

sensory stimuli can generate correlation on a time scale of seconds (Bair et al., 

2001; Bach & Kruger, 1986). Therefore, we performed simulations by using a 

wide range of correlation time c  (5 ms < c  < 5 s), the results of which are 

presented in Figs. 5A–5C. Here, to clarify the impact of ADFB, the results of both 

using and not using ADFB (left and right column, respectively) are shown. The 

value of A / A  for the case without ADFB ( A / A  = 0.975) was chosen such 

that the steady-state weight distribution becomes approximately the same for the 

two models with smaller c  ( c  = 10 ms; Fig. 5A). As shown in the figure, with 

such smaller correlation time, the correlated synapses gather near either the upper 

or lower boundary, whereas the uncorrelated synapses are depressed toward the 

lower boundary (Song and Abbott, 2001). However, as the correlation time is in-

creased, all the synapses are pushed toward the lower limit in the absence of 

ADFB (Fig. 5B, right), converging to a unimodal distribution, whereas in the 

presence of ADFB, the correlated and uncorrelated inputs tend to decrease and 

increase, respectively, converging to a bimodal distribution (Fig. 5B, left). There-

fore, in the presence, but not absence of ADFB, there is a threshold value of c  

such that the correlated inputs are strengthened or weakened, compared to the 

uncorrelated inputs, depending on whether the value of c  is smaller or larger 

than the threshold, respectively (Figs. 5C and 5D).  

It should be noted that a group of inputs having longer correlation time cannot 

quit firing after evoking postsynaptic spikes, increasing the number of post-pre 

timing spike pair that induces LTD (Song et al., 2000). Therefore, it is not surpris-

ing that, in both the presence and absence of ADFB, the synaptic strength of cor-

related inputs was decreased by increasing c  (Fig. 5C). An interesting feature of 

ADFB is that it can function to compensate for the decline of the correlated inputs 

by increasing the LTP/LTD ratio (Fig. 5E). This in turn strengthens the uncorre-

lated inputs (Fig. 5C, left), since their synaptic drift is primarily determined by the 
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integral of the STDP curve (Song and Abbott, 2001; Rubin et al., 2001). Thus, the 

increase in the uncorrelated inputs can counterbalance the decrease in the corre-

lated inputs to maintain the postsynaptic activity (Fig. 5F). This will also be un-

derstood from Fig. 2B; the thin lines in this figure, which represents the relation-

ship of Eq. 3, show that ADFB keeps the postsynaptic firing rate at an almost con-

stant value as long as LTP and LTD are approximately balanced. 

To further explore the input correlation-based synaptic modifications under the 

effects of ADFB, we performed similar calculations while changing the strengths 

of ADFB modulation and of inhibition (Fig. 6). The correlation time dependence 

of the strength of the correlated and uncorrelated inputs (Figs. 6A and 6B) and the 

difference between them (Fig. 6C) as well as the LTP/LTD ratio (Fig. 6D) was 

found to be strongly modified by alterations in   and inhg . Figures 6A and 6B 

suggest that the synaptic strength of either/both group(s) tends to accumulate very 

close to the upper or lower limit for a range of very small or large values of c , so 

that the separation of the two groups of weights becomes saturated under the in-

fluence of the boundaries (Fig. 6C). The LTP/LTD ratio is increased and de-

creased, in a wide range of c , by smaller   and inhg , respectively (Fig. 6D), 

which is consistent with the previous results for uncorrelated input cases (Fig. 

4B). Additionally, it can be found that in a particular range of c  (80 ms < c  < 

400 ms), the correlated inputs can be either strengthened or weakened, compared 

to uncorrelated inputs, depending on the values of   and inhg  (Fig. 6C). This 

effect implies that the changes in   and inhg  could regulate which among cor-

related and uncorrelated inputs become strengthened by STDP. This was clarified 

by performing the same simulations while systematically changing the values of 

  and inhg  in the case of c  = 160 ms, as shown in Fig. 6E. The figure dem-

onstrates that changes in these physiological parameters can modulate both the 

direction and the magnitude of the input correlation-dependent synaptic modifica-

tions emerging from STDP. 
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4. Discussion 

In this study, we have examined an STDP model incorporating an ADFB mecha-

nism, wherein higher postsynaptic activity decreases the magnitude of LTP so that 

the LTP/LTD ratio is modified dynamically. When a postsynaptic neuron receives 

random uncorrelated inputs, the temporal average of the LTP/LTD ratio ( /A A  ) 

in the STDP curve was increased and decreased gradually, within a range slightly 

smaller than 1, by increasing inhg  and  , respectively (Figs. 2B and 4B). The 

strengths of ADFB and inhibition therefore provide physiological mechanisms by 

which the LTP/LTD balance in STDP can be precisely controlled. Importantly, 

for a given value of  , changing inhg  does not significantly change the postsy-

naptic firing activity (Fig. 4D). This finding suggests that ADFB achieves a strong 

regulatory function that maintains the level of neuronal activity by slightly modu-

lating the LTP/LTD ratio (Figs. 4B and 4D). We further studied the cases where 

the input consists of two groups of synapses, where one group is correlated and 

the other group is uncorrelated. In this case, as the correlation time ( c ) is pro-

longed, the dominant group was switched under ADFB modulation such that the 

correlated and uncorrelated groups become dominant for smaller and longer c , 

respectively (Figs. 5C (left) and 5D). This switch in the direction of input correla-

tion-based plasticity represents an additional regulatory function emerging from 

ADFB. When the prolonged correlation weakens the correlated synapses (Fig. 5C 

(left); Song & Abbott, 2001), ADFB can produce a bias in the LTP/LTD ratio 

toward LTP (Fig. 5E) and counterbalance the decrease in the correlated synapses 

by the increase in the uncorrelated ones, keeping the neuronal activity nearly con-

stant (Fig. 5F). Interestingly, the direction of the input correlation-based plasticity 

can reverse with changes in the values of   and inhg , within a certain interme-

diate range of c  (Fig. 6E), providing a possible mechanism for tuning a sys-

tem’s response properties in response to stimulus characteristics.  

 

4.1. Physiological mechanisms regulating LTP/LTD balance in STDP 

The synaptic dynamics resulting from STDP has been shown to have an important 

advantage of being competitive, unlike the rate-based models of Hebbian plastic-

ity (Song et al., 2000). However, the induction of such a competitive function 

critically depends on an approximate balance in LTP and LTD in the STDP curve 
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(Song et al., 2000; Rubin et al., 2001). Considering the fact that such LTP/LTD 

balance is generally not found in the learning curves obtained by experiments us-

ing pairing protocols (e.g., Bi & Poo, 1998), it appears likely that an additional 

mechanism may be involved in regulating this balance in biological systems. 

The present results have shown that the ADFB mechanism can maintain an ap-

proximate balance in LTP and LTD (Fig. 4B); moreover, modulation of the 

strength of ADFB as well as of inhibition, provided by the activation of GABA 

conductance, has been found to be effective in very gradually modulating this 

balance. As mentioned above, a line of evidence suggests that the magnitude of 

ADFB can be altered under physiological conditions; first, the induction of LTP, 

but not LTD, depends on the activation of postsynaptic NMDARs (Bender et al., 

2006; Egger et al., 1999; Nevian & Sakmann, 2006), indicating that the LTP/LTD 

ratio depends on the activity level of NMDARs. Second, the Ca2+-dependent de-

sensitization of NMDARs will be found in NR2A- but not NR2B-containing 

NMDARs (Krupp et al., 1996), suggesting that switching from NR2B to NR2A 

subunits will promote the activity-dependent desensitization of NMDARs medi-

ated by the Ca2+ influx through voltage-dependent Ca2+ channels (Medina et al., 

1999). Therefore, we consider that the coordination between NMDAR subunit 

expression and GABA conductance may be involved in the control of the 

LTP/LTD balance in the STDP learning rule. 

Importantly, the primary role of the ADFB mechanism in our model is to pre-

vent the saturation of synaptic weights so that the firing rate is maintained in a 

reasonable range (Fig. 2). Therefore, it would be possible to regulate the 

LTP/LTD balance by using more general mechanisms that can maintain the firing 

activity in the neuronal circuits, such as homeostatic plasticity (Turrigiano & Nel-

son, 2004). Additionally, since the physiological mechanisms that control the ex-

pression pattern of distinct NMDAR subunits (Caldeira et al., 2007) or provide 

subunit-specific modulation of NMDAR-mediated synaptic currents (Yuen et al., 

2005) will be expected to alter the strength of ADFB modulation, it appears likely 

that these mechanisms can contribute to regulating the LTP/LTD balance in bio-

logical systems. It has also been shown that the LTP/LTD balance can be pre-

cisely regulated, similar to the present study, by using the STDP model involving 

synaptic modification based on a biophysical Ca2+-dependent plasticity model 

(Kubota & Kitajima, submitted). 
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4.2. Hebbian and anti-Hebbian plasticity in STDP  

The notion of Hebbian plasticity has guided much work in both experimental and 

theoretical neuroscience (Buonomano & Merzenich, 1998; Feldman & Brecht, 

2005). At a level of cortical organization, a Hebbian-based learning rule contrib-

utes to detecting correlated inputs and expanding the representation of such in-

puts. This would be effective to augment the cortical processing capacity of be-

haviorally relevant inputs, given that the peripheral inputs that fire at similar times 

are likely to represent points that are close together on peripheral sensory units 

(Buonomano & Merzenich, 1998). 

STDP has been considered important as a mechanism for realizing Hebbian-

based plasticity in natural conditions (Abbott, 2003). STDP can strengthen a 

group of correlated inputs and promote the organization of neuronal connections 

in an activity-dependent manner (Song & Abbott, 2001). The present study has 

revealed that when STDP is accompanied by the ADFB mechanism, it can 

strengthen or weaken the correlated inputs as compared to uncorrelated ones when 

the correlation time is shorter or longer than a threshold, respectively (Fig. 5D). 

This result suggests that STDP can act as either a Hebbian or an anti-Hebbian 

learning rule depending on the correlation structure of afferent inputs. Further-

more, this finding is reminiscent of recent observations of barrel map plasticity 

(Polley et al., 2004; Polley et al., 1999; Feldman & Brecht, 2005), which have 

revealed that transferring rats from home cages to a natural environment induces 

the contraction of the representation of frequently-used whiskers as well as the 

sharpening of the whisker map. Based on our results, we can predict that the con-

traction of frequently-activated inputs may occur through the appearance of pro-

longed correlation times within the firing activity of the neuronal subpopulation 

representing the inputs to the barrel cortex (Fig. 5D). Since the time scale of the 

correlations will significantly depend on that of changing input stimuli (Bach & 

Kruger, 1986; Simons, 1978), it appears conceivable that the observed change in 

barrel map plasticity (Polley et al., 2004; Polley et al., 1999) may result from the 

alteration in the time course of whisker movement caused by active exploration of 

a natural environment. 

Another source of correlated firing arises through synchronized membrane 

fluctuations, which consist of ‘up’ and ‘down’ states, and is frequently observed 
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between nearby cortical neurons (Lampl et al., 1999; Anderson et al., 2000; Kohn 

& Smith, 2005; Castro-Alamancos, 2009). The correlation of the two-state mem-

brane potential fluctuation is stronger in pairs of cortical neurons that respond to 

the same aspects of sensory stimuli (Lampl et al., 1999), and additionally, this 

type of correlated firing is enhanced by the stimulus presentation (Anderson et al., 

2000), suggesting that it plays a role in the stimulus-dependent cortical process-

ing. For a range of correlation time (80–400 ms), nearly corresponding to the time 

scale of correlation by the membrane potential fluctuation (Lampl, et al., 1999; 

Anderson et al., 2000; Castro-Alamancos, 2009), our model predicts that whether 

the correlated inputs are potentiated or depressed depends on the level of ADFB 

and GABA inhibition (Fig. 6E). Therefore, the combination of the cortical mem-

brane fluctuation and the ADFB modification of STDP may provide the neurons 

with the ability to select from Hebbian or anti-Hebbian rule such that the inputs 

arising from sensory stimuli can be strengthened or weakened compared to those 

from the background spontaneous activity. The cortical network may use Hebbian 

plasticity to increase the response to the behaviorally important stimuli by 

strengthening the connections from such stimuli to widely distributed neurons. On 

the other hand, anti-Hebbian plasticity may be beneficial when animals are in an 

environment containing many stimuli so that a more efficient method for repre-

senting each sensory stimulus is required (Polley et al. 2004). Therefore, we con-

sider that the proposed mechanism for selecting from functionally distinct forms 

of plasticity rules may be useful to permit efficient distribution of limited meta-

bolic resources for achieving cortical representation of stimuli.  
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Figure legends 

Figure 1. Components of the computational model. (A) A postsynaptic neuron 

receives Poisson inputs from both excitatory and inhibitory synapses. The excita-

tory inputs are plastic and their strength is modified by STDP. (B) The magnitude 

of LTP in the STDP learning curve is dynamically modulated by feedback de-

pending on postsynaptic firing rate ( postf ) (Eqs. 1 and 2). 

 

Figure 2. Predicted effects of changing the LTP/LTD ratio ( /A A  ) on the equi-

librium properties of STDP. Thick lines: The values of average weight (A) and the 

mean firing rate (B and C), obtained by STDP without ADFB (i.e.,   = 0), were 

plotted as function of /A A  , for three different values of the inhibitory conduc-

tance inhg  ( inhg  = 3.75, 5, or 6.25 µS/cm2). Note that different ranges of /A A   

are used in (B) and (C). Thin lines in (B) and (C): The linear relationship between 

/ ( )A A t    and ( )postf t  specified by Eq. 3 for   = 0.6 and 0.8.  

 

Figure 3. The time course of the /A A   ratio at the equilibrium state of STDP 

(   = 0.5 and inhg  = 6.25 µS/cm2). 

 

Figure 4. The equilibrium properties of the STDP model incorporating an ADFB 

mechanism. The temporally averaged values of the /A A   ratio (A and B) and 

the average weight over all the synapses (C), the mean postsynaptic firing rate 

(D), and the CV for the ISIs (E) are plotted as function of   for three different 

values of inhg  ( inhg  = 3.75, 5, or 6.25 µS/cm2). (B) shows the higher magnifica-

tion of the /A A   ratio in (A). Open symbols in (B) and (D): The values of 

/A A   and the postsynaptic firing rate obtained by the intersection points in Fig. 

2B (see Sec. 3.1). The difference in the firing rates for the three cases of inhg   is 

invisible in the open symbols in (D).  

 

Figure 5. The equilibrium properties of the STDP model when the neuron receives 

both correlated and uncorrelated inputs. (A–C) The steady-state weight distribu-

tions (A and B) and the relationship of the average weight vs. the correlation time 

(C) for the correlated (red) and uncorrelated (black) input groups. The ADFB 
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modulation is active in the left column, but inactive in the right column. The cor-

relation times used for (A) and (B) are c  = 10 and 1280 ms, respectively. (D–F) 

The difference in the average weight between the correlated and uncorrelated 

groups (D), the temporal mean of the LTP/LTD ratio (E), and the postsynaptic 

firing rate (F) are shown as a function of c . The solid and dashed lines show the 

cases with and without ADFB mechanism, respectively.  

 

Figure 6. The effects of changing the strength of ADFB (  ) and the inhibition 

level ( inhg ) on the equilibrium properties of STDP in the presence of both corre-

lated and uncorrelated groups of inputs. (A and B) The average weights for the 

correlated (red) and uncorrelated (black) groups at the equilibrium of STDP are 

plotted as function of the correlation time c . In (A), the impact of changing   

is examined, where   = 0.8 (solid) or 0.6 (dashed). In (B), the impact of chang-

ing inhg  is examined, where inhg  = 5 (thick line) or 3.75 µS/cm2 (thin line). 

( inhg  = 5 µS/cm2 in (A) and   = 0.8 in (B)) (C and D) The difference in the 

average weights between the correlated and uncorrelated groups (C) and the tem-

porally averaged value of /A A   (D) are plotted by using the same line types as 

those in (A) and (B). (( , inhg ) = (0.8, 5) (thick solid), (0.6, 5) (dashed), or (0.8, 

3.75) (thin solid)) (E) The difference in the average weight between the two input 

groups as a function of   and inhg , where c  = 160 ms. The correlated inputs 

are potentiated or depressed, as compared to the uncorrelated inputs, depending 

on the values of   and inhg . 
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