AN ALGORITHM FOR FAST CALCULATION OF FLOW
ENSEMBLES

NAN JIANG AND WILLIAM LAYTON

ABSTRACT. This report presents an algorithm for computing an ensemble of
p solutions of the Navier-Stokes equations. The solutions are found, at each
timestep, by solving a linear system with one shared coefficient matrix and p
right hand sides, reducing both storage required and computational cost of the
solution process. The price that must be paid is a timestep condition involving
the timestep and the size of the fluctuations about the ensemble mean. Since
the method is a one step method and the timestep condition involves only
known quantities, it can be imposed to adapt the next timestep. The report
gives a comprehensive stability analysis, an error estimate and some first tests.

1. INTRODUCTION

There are many uncertainties inherent in numerical simulation of fluid flows.
Calculation of an ensemble of p solutions deals with these inherent uncertainties
to increase the window of predictability (by averaging), e.g., [1], [2], [3], to es-
timate solution sensitivities, e.g., [4], [5] and to estimate the uncertainty in the
result (by calculation of a PDF of the resulting solution), e.g., [6], [7]. Further,
the bred-vectors algorithm, [1], used to select a minimal set of ensemble members
capturing maximal spread of the resulting forecast itself involves repeated ensemble
flow simulations. One common way to calculate these ensembles is to treat them
as separate tasks, requiring computational effort and memory p-times the amount
required for one simulation. If available memory is sufficient to treat the tasks in
parallel, then the turnaround time is not increased, while if not then the turnaround
time is multiplied by p. This report explores a new approach ( (BEFE-Ensemble)
below) intermediate between these two extremes which requires a negligible storage
increase over one simulation (p solution vectors) and could have run time reduced
over p successive simulations, depending on the block solver used and the timestep
condition required for stability (Sections 3, 4). Thus the method is a new way to
rebalance “the competition between high-resolution, single deterministic forecasts
and ensembles” (Stensrud [8], p. 401). The motivation for the new method is
that for linearly implicit methods, the linear solve is a large contributor to overall
complexity and it is far cheaper in both storage and solution time to solve p linear
systems with the same coefficient matrix than with p different coefficient matrices.
For example, block generalized CG methods compute p residuals at each step but
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compensate in speed of convergence by producing approximations optimized over
a p X (#steps) dimensional Krylov subspace, e.g., [9], [10], [11], [12].

Accordingly, we consider a discretization of an ensemble of p solutions of the
NSE requiring solution of one linear system with the same coefficient matrix and p
RHS!. To begin, consider p Navier-Stokes equations with p slightly different initial
conditions and body forces, u?, f;, on abounded domain subject to no slip boundary
conditions, for j =1,...,p:

(1.1) uj ¢+ uj - Vu; —vAu; + Vp; = fi(z,t), in Q,
V-u; =0,in Q,
u; =0, on 012,

u;(x,0) = uf(x), in Q.

We denote the ensemble mean by

P
<u>”'*1 ul!
= E i

=1

To present the idea, suppress the spacial discretization. Using an implicit-explicit
time discretization and keeping the resulting coefficient matrix independent of the
ensemble member, leads to the method:

wtt
JTt]—F <u>" -Vu?“ + (uj— <u>")Vu}
(BEFE-Ensemble) +VpIt —vAugt =
V- U?-H =0.

Since the resulting coefficient matrix multiplying each u}”‘l is independent of 7,
(ensemble number), advancing one step we solve one linear system with p RHS.
Naturally, if the number of ensemble members is large enough, it can be subdivided
into p member sub-ensembles, balancing memory, communication and computa-
tions, and (BEFE-Ensemble) applied to each. Further, the choice of the ensemble
data u} and f; is application dependent.
The ensemble mean equation. Taking the ensemble mean of (BEFE-Ensemble),

< u >" satisfies

<u >t — <y >
At
(1.2) H<u - Vu>" — <u>"V <u>" =< f>"" | and

V- <u>"T=0,

which is a discretized variant on the usual ensemble averaged NSE.

Timestep conditions. Since (BEFE-Ensemble) involves an explicit discretiza-
tion of a stretching term, a timestep restriction is necessary for long time, nonlinear
stability. With an FEM spacial discretization with mesh size h, we prove in Section
3 that in both 2d and 3d (BEFE-Ensemble) is stable under

+<u>"Vau>" 4V <p >t pA <y >

At " "
(1.3) C’EHV(uNb— <up >M|P <1

1One easy method to do this is simply to lag the nonlinear terms and pay the price in the
associated and severe Re dependent timestep restriction.
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Thus, as long as the deviation of each ensemble member from the ensemble mean at

each time step is not too big, the method is stable. When the deviation increases,

the timestep must decrease according to (1.3). In Section 4 we give improvements

of this condition. For example, in 2d we prove stability under
MHVW%— <up >MP<1.

We also give a condition valid for locally refined meshes, useful in cases when local

mesh widths are cut to balance locally large gradients.

In Section 5, we give an error analysis in the error in the individual ensemble
member using finite element methods for spacial discretization. Analysis of the
error in a PDF constructed from the approximations to the individual member’s
discrete approximation is an important open problem. Numerical tests confirming
our theory are presented in Section 6.

2. NOTATION AND PRELIMINARIES

Let © be an open, regular domain in R%(d = 2 or 3). The L?(Q2) norm and the
inner product are ||-|| and (-, -). Likewise, the LP(2) norms and the Sobolev W; (Q)
norms are ||+ ||z» and || - ”WZf respectively. H(Q) is the Sobolev space W¥ (), with
norm || - ||x. For functions v(x,t) defined on (0,7, we define (1 < m < o)

1/m

T
[0lloc.r := EssSupiorillo(t, )k, and [oflmx = (/ IIU(t,-)ZLdt>
0

The space H~*(Q) is the dual space of bounded linear functions on H¥(Q). A
norm for H~1(Q) is given by

o= sup DY

overi(@) IVl

We base our analysis on the finite element method (FEM) for the spacial dis-
cretization. The results also extend to many other variational methods. Let X be
the velocity space and ) be the pressure space:

X = (Hy()%, Q = Lg(Q).

For v € X the usual H'/? (©) norm satisfies the interpolation inequality

[oll1/2 < CV/ [l Vo]
The space of divergence free functions is

Vi={veX :(V-v,9) =0,VYq € Q}.
The norm on V* (the dual of V) is defined as
f,v

Il = e, S5
A weak formulation of (1.1) is: Find u; : [0,7] — X, p; : [0,T] = Q for a.e.
t € (0,T] satistying, for j = 1,...,p:

(uj e, v) + (u; - Vug,v) + v(Vu,, Vo) — (pj, V- v) = (fj,v) , Vwe X

uj(z,0) = ujo(x) in X and (V-u;,q) =0, Vg € Q.
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We denote conforming velocity, pressure finite element spaces based on an edge
to edge triangulation of Q (with maximum triangle diameter h) by

XhCX,QhCQ.

We assume that X, and Q) satisfy the usual discrete inf-sup condition. Taylor-
Hood elements, discussed in [13], [14], are one commonly used choice of velocity-
pressure finite element spaces. The discretely divergence free subspace of X}, is

Vi = {Uh e Xy : (V'Uh,th) =0,Vq € Qh}

We assume the mesh and finite element spaces satisfy the following standard in-
equalities (typical for locally quasi-uniform meshes and standard FEM spaces, see,
g., [13]): for all v, € X}

(Inverse Ineq) R\ Vur|l < Clinvyllvnll,

(Discrete Sobolev) vnlloe < C|Inh|Y2||Voy|, in dimension d = 2.

Define the usual explicitly skew symmetric trilinear form
. 1 1
b* (u,v,w) := i(u -Vo,w) — i(u -Vw,v).
b* (u, v, w) satisfies the bound
b* (u,v,w) < Cllul| 1 [Voll[[Vw]], for all u,v,w € X.

Lemma 1. For any up,vn, wn € Xp,

1
b* (up, vp, wp) = / up, - Vop, - wp, dx + 3 / (V- up)(vp - wy) de.
Q Q

Proof.
. 1 1
b* (up, Vp, wp) = §(Uh - Vg, wp) — §(uh - Vwp, vp).
Integrating by parts the second term and using up|oq = 0:
—(up - Vwp,vp) = (up - Vo, wn) + (V- up, vp - wp).

O

The fully discrete approximation we study of (1.1) is: Given u, find uﬁ:l € Xy,

p?jil € Qy, satisfying

P L
(MTtJ’h,vh) + 0" (< up, >",u?jl'1,vh) + 0" (uj = <up >",ul,,vn)
(2.1) —(p?jgl, Vo) + IJ(VuZJ,gl7 V) = (f;-”l, vR), Yop, € X,
(V- u}l’;jl,qh) =0, Yqn € Q.

C represents a positive constant independent of v, the solution u, the time step At
and the mesh width h. Its value may vary from situation to situation.
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3. STABILITY OF THE ENSEMBLE METHOD
We begin by proving unconditional, nonlinear, long time stability of (2.1) under
the first timestep condition:

Al | ,
(3.1) C—|V(ufy— <un >MP <L j=1l--p.

Since (3.1) is based on known quantities and (2.1) is a 1-step method, (3.1) can be
applied to adapt /At at every timestep to compute u?“ stably. Improvements of
(3.1) in special cases are developed in Section 4.

Theorem 1 (Stability of BEFE-Ensemble). Consider the method (2.1). Suppose
the condition (3.1) holds. Then, for any N >1

1 vAt VAt
§IIU§\,’hH2 Z Jul it =y )* + 7HV Wl?+ — Z [Vul 2

N-1
At 1 VAt .
< X G G+ S, =L
n=

Proof. Set vy, = u"+1 (2.1). This gives:

(3.2) \ ”“IIQ—*H Tall? + *IIM"*1 ul|I?
FA (U= < wp S U, 7;1)+uAt||vu”+1|\2 A7t

Applying Young’s inequality to the right hand side gives

1 1
S 2 = S+ et —
2 2
(3.3) FAL (uf = < up >"uf g, ulf fujh)+1/At||Vu"+1H2
e et Tl

Next, we bound the trilinear term using the interpolation and inverse inequalities,
as well as Lemma 1.

+1
—Atb*( — < up >" ]h,u;lh —u;-‘h)

< CAtIIV(U?,r <up > )HHVUJ allluf =il

1
+5CAHIV - (= <un >M)[[ufn - (ufi" = wfin)l

(3-4) < CAHV(ug = < un >") Vg llllufyt = uinlls

1 n n n n 1
H5OALY - (= < un >[IVl Tl P V@t a2
< CAL|V(uf = < un >") [Vl [(Ch™ %) Julft — U",

+5 CAtHV( < up SMIVuf, [(Ch2) uy =yl -

]h

Using Young’s inequality again gives



6 NAN JIANG AND WILLIAM LAYTON

(3.5) =AD" (uf ) — < up >",uj, ?'}; —ujp)

j h™
< CLﬁHV( —<u >n)||2||v n 2 - n+l _  n |2
h ugplI” + IIU ugpll” -

Combining like terms, (33) becomes

1 vAt
(3.6) || "Hll2 - *||U§L,h|\2 *||U”Jrl —ulf[I? + — IV el

At? N N
||f"+1H2 + OV (ufh— <un> PV bl -
Adding and subtractlng LB Vul,[|? gives

1 vAt

(3.7) 2| wip* = *II wll” + *Hu"Jrl winll® + = Ve = Vgl
n CAt n n At
{HV i 1P+ (= —= IV (= < wn >M) ) Vugal®} < 5Hfj [
With the restriction (3.1) assumed, we have
VAt CAt n "
0= S < ST 2 0.
Equation (3.7) reduces to
1 1 n 7 n
(3-8) St 1% = Slugall® + *Ilu =l
VAt " uAt n At n
- UV 1P = IV ) + = Va2 < I

Summing up (3.8) from n =0 to n = N — 1 results in

Z/At Z/At
Sl + leu”“whnﬂ—uv ||2+—lev oal

At , 1 vAt
(39) < 3 Aoz L+ 2w e
n=0
This concludes the proof of stability. O

4. SHARPENING THE TIMESTEP CONDITION

We have derived a global condition on the timestep that is sufficient for stability
in 2d and 3d. There are many important cases where this condition is improvable:

Clin(h)|At
(2d C1) %HV(u}fh— <up >M|*<1, 2d,
CAt
(2d C2) W(HU% <up > PV (uf,— <un >MIP) <1, 2d,
CAt, "2 N .
(3d, L3) W”uj,h_ <up >" |75 <1, 3d - no derivatives of fluctuations,

CAt
(Local)  max WHV(U?JL— < up >")H%2(e) <1, 3d-locally refined meshes.
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4.1. The case of 2d domains. In 2d, embedding estimates improve and this
improvement leads to an improvement of the timestep condition.

Theorem 2 (2d domains). Consider the method (2.1). Suppose the condition (2d
C1) or (2d C2) holds. Then, for any N > 1

Sl + Z gt =l + 2w+ S e
n=0
NZ 73702 + SISl + VU, =1,
Proof. In 2d we have
A" (uf ), — < up >",uj h,U?Jﬂl —ujp)

< CAtIIU?,h <un >" ool Vg pllllufst = bl
1 n n
(4.1) +5 CAHIY - (uf = < un >") 1w lloo " — uhll

<Cy Iln(h)IAtHV(U?,h— <un "Vl =gl

1
+5 VM)AV (= < un MV llllaftt =)l
< Clin(h)| ARV (ufy— < un >™)|2[[ Vs |2 + f||u"+1 — il
or,
A (ulf ), — < up >™ul =l
< cmnugh— <un >" Jloo |Vl [ufht = ufy |
i cmuv (W= < un ") uf g oo lluf i = gl
(4.2) < Ch 1At||ujh <up >" | [Vuiy uf bt =l
+ C’h YAV - (uf = < up >Vl hHHU"Jrl — gy
Atz n n N2 2 n |2
< Oz (lufin= < un >" [P+ IV - (= < un >™) PVl
,||u"'*'1 — u;éh||2 .
Thus,
1
S = Slhaall + k! =
VAt VAL
(4.3) e UV I = IV 2+ = v )2
Clin(h)|At At
+(1 = == V(= < un >NV < SIHE

or,
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ST = Sl + it — a2
(4.4) T N o MR (el
+(1—%<Hu;h <un STV @l < un M)V}
< ééfo”+1H2-

4.2. L? estimate on the fluctuating part.

Theorem 3 (L3 estimate). Consider the method (2.1). Suppose the condition (3d,
L3 norms) holds. Then, for any N > 1

vAt I/At
?+ Z Jul it —ulpl* + 7HV WP+ — Z [Vul 2

1
§||U§Yh
- At a2 L0 2, VA 2 ;
< 3 IR+ SISl + EE VAR, =1
n=0

Proof. By Holders' inequality, we have

* 1

Atb* (uf <u]h>,u]h,uyz —ujp)

1
(4.5) < §Atll(u;’,h* <un >") s |Vl lufht =i ylloe
1 n+1 n
5 At (ug = <un >")pellwfalle IV (ujy —ujp)lie.
Using the Sobolev embedding theorem and the inverse estimate on the ( ?ng —uly,)
terms give
1 1
IV @3t —ufp)llee < ChHugh! —uf |

HU"“ —ujpllee < CR7Hufht —uj -
Thus, for any € > 0,

At (uf,— < up >",u?h,u;.”gl —ujp)
(4.6) < Ch7 A (W= < un >™)pa [Vaf gyt —

eAt CAt
< o legit = uiall® + S = < un >MI7s Ve
We use this estimate with e = 2A¢~1. This gives
1 VAt
(@7) Sl - *II wll® + *HU"Jrl winll® + = Ve P = Vg l®)y
I/At CAt At
UVt P + (=~ e = <un >" [[7:)[Vag,l*} < gllffﬂlﬁ :
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4.3. Locally refined meshes: Often meshes are locally refined in regions of sharp

gradients. We show that a sufficient condition is that At satisfies the following for
all elements e:

CAt

(uf = <un >")|720y < 1.

For the local condition we perform the same steps (locally on the element e) as in the
proof of Theorem 1 noting that (i) Hélders' inequality can be applied locally (with
no dependence on diam(e) therefrom), (i¢) the inverse inequality holds locally, with
he = diam(e) and constant depending only on the shape (h./pe, pe is the diameter
of the largest ball that can be inscribed in e) of the element, [15], and (¢ii) the
Sobolev embedding theorem holds locally with absolute constant independent of
he.
From the stability proof we observe the following.

Lemma 2. The conclusion of Theorem 1 (on stability) holds provided at every
timestep:

vAt
*llun+1 ullI” + — IVu Tl

AL (uf ), — < up > ,ujh,uﬁ; —uj,)>0.

The same conclusion holds if, on every element e,

/{ gt — g+ 2w
+A[(u? ulp— < up >") - Vuj’h . (uyzl — u?h)

5V (= < =) - (- (0 = )] 2 0

Theorem 4 (Locally refined meshes). Consider the method (2.1). Suppose the
locally refined meshes condition holds. Then, for any N > 1

1 I/At
ul, Z Jul it = [I* + HV WP+ — Z IVt

At " vAt .
< Zg”]@“”f || 0h||2+7‘|v Il j=1..p.
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Proof. We have

|/At = <up >")-Vujy - (uyzl —ujp)
5V < >") - (- () — )] dal
< cAtnw Y= < > o IV a2
gt - MHLQ IV =)z,
(@8) ORI (i <>l e — ) oo
< CAHIV (= < un >") 2o Vall o
it = e IV @0 — ) e
S OMY - < > MoVl

it~ u?,h||zz<e)||wu;:1 - u;th>|| 2ot
< CALV(uf = < up >") 220 VU] bl L2(e) (Che )||Un+1 —ujpllre(e)
1 n n n n n
5 OALV (= < un >z I Vujallze o (Che )||u w =l -

Using Young’s inequality gives

|/At = <up >")-Vujy, - (uﬁ;l —ujp)
(4.9) +§(V (U= <up >") - (ufy, - ()t - u;ih)))] da|
At2 n n
<C (ufp— <up > )HL?(e ||Vu],h||L2 e 1t7 ||U - Uj,h||2L2(e) .

Thus, under the locally refined meshes condition,

St =l + SV

M €57 5 - )

(4.10) +(ufp— < up >" - V(u}’ﬁl —ujp) u;‘h]}dgc
VAt CAt " n
> T( (ujp— <up> )”%Q(e))Hvuj,h”%Z(e) > 0.
Then, by Lemma 2, we obtain stability. (I

5. ERROR ANALYSIS FOR THE ENSEMBLE METHOD

In this section we give a detailed error analysis of the proposed method under
the 3d stability condition. This analysis can be elaborated to analogous results in
the cases of the other, sharpened stability conditions. Assume X} and @, satisfy
the usual (LBB") condition, then the method is equivalent to: For n = 0,1, ..., Ny,
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find u”"’1 € Vi, such that

n+l _  n

j,h j,h n *
(5.1) (%,vh) + b0 (< up > ,ujj;l,vh) + 0" (uf = < wjn >"uj g, vn)

+u(Vul it Von) = (f17F vn) |, Vou € Vi

Let t" = nAt,n=0,1,2,..., Ny, and T := NrAt. Denote u} = u;(t"), j=1,...,p
We introduce the following discrete norms:

Nt
V[l e == (z% o™ [ A8, ([0l oo,k = onax " lx
n=

To analyze the rate of convergence of the approximation we assume that the fol-
lowing regularity

uj € L>(0,T; H*(Q)) n H*(0,T; H*(Q)) n H*(0,T; L*(Q)),
p;j € L*(0,T; H¥"1(Q)),and f; € L*(0,T; L*(Q)).

Let e} = u} —u}) be the error between the true solution and the approximation,
then We have the following error estimates.

Theorem 5 (Convergence of (BEFE-Ensemble)). Consider the method (5.1). Sup-
pose that for any 0 <n < Nrp, the condition (1.3) holds
C—hHV(uLh— <up >MFP<1, j=1,..p.

Then, for any 0 < tN < T, there is a positive constant C independent of the mesh
width and tz’mestep such that

N—-1

o vAt
|| NP+ Z ettt — -H2+?HV6§VH2+0N > vvertt?
n=0
T VAt
< ewp(C*){*ll OHQJriHV 0H2—|—C—|||Vu]||| olllui 13,641
AtQ 2k
+07|HVUJ||| ol 5 +Cﬁllluy‘|||§,k+1
h2k+1
5.2 C——
(52) TeLaa
h2s+2 h2k+2
+C 1p;113,541 + C
C’At2
+Cv ——lugeel 2,0} -

For k = 2,s =1, Taylor-Hood elements, i.e. Co piecewise quadratic velocity space
X}, and C° piecewise linear pressure space @Q),, we have the following estimate.

Corollary 1. Under the assumptions of Theorem 5, with eg taken to be 0, At/h

fized to be a constant C, (X}, Qp) given by the Taylor-Hood approximation elements,
we have

N-1
At
|| JI2+ Z ef T —efII* + LIIV YIP oty v|vertt? < on® .

n=0
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Proof. The true solutions of the NSE u; satisfy

ulmt —ul
(5.3) (JTtJ ) + 0% (Wl o) + (Ve Vo) — (7L Vo)
= (f;“|r1 n) + Intp(u} o) for all v, €V}, .
where Intp(u; n+ L) is defined as
u Tt —
Intp(u™50p) = (JTt] —uj e (t"), o) -

Let

ef =ul —uj, = (uj — Iyu}) + (Iyuj —ujy,) =ni + &7, i=1..p.

where 1, pui € Vp is an interpolant of u? in Vj,. Denote

U=ujp— <up >"

Subtracting (5.1) from (5.3) gives

g"'}‘;l B nh n Py n
(=2t AL L2 o) + V(ij",tl,Vvh) + b (u +1,uj o)
(5-4) =b"(uf), — U ujit on) = 05 (U uflp on) — (071, V - on)
_ n;L+1 B nj n+1 n+1.
= (T,vh) —v(Vni™, Vo) + Intp(u]™ 5 o)

Set vy, = 5;’;:1 € V}, , and rearrange the nonlinear terms, then we have

n ]' n n n n
(5 15 “IIQ**IIG, *Ili =) + VeI

At 2
—b* (uf 1 ug ”“>+b*( e u L E)
(5.5) b*(U;% uf =y, N + ()L V)
nn+1777‘
~(F ) (I VET) + Intp(uf €T

Now we bound the right hand side of the equation above. First, for the non-

linear term, adding and subtracting both b*(u ”‘H, ?ZI,E"H) and b*(U" "+1
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uj ,f”“) we have

b () 0 (€

* n n+1 n+1
+b (U 5 ]h —uj,h,g

)
+1 en+1 n+1) b*( n+1 ;7, un+1 €n+1>

= =" T 6 Y Ujh s
—b* (e}, ?Zl,ﬁ”“)ﬂLb*(U}Z uf it =y, &5
:7b*( n+ ’77;1-5-1 ;«L;rl) b* (u n+17uwu?-’f;17£n+1)
(5.6) =" (nf ul L E) = b (€ €
—b* (U}, et — el &) + 05 (U uf T — il €
= —b*(u n+1’,’7;1+1’ n+1) b*(u n+1_uwu74’517§n+1)

76*(77] ) ?217£n+1) - b*(éj h?u?—}tl7£n+l)
—b*(Un, njn-l—l n+1) + b*(Un, ,'7] ,é«n-i-l)
O (UF &5 E0T) + b7 (U — i €55

We estimate the nonlinear terms as follows

(5.7) O (g L LR < CIVu IV IV E

J 7

< 64IIVf”Hll2 + O [ Vu PV

b (™ - “J Gt ) < CIV @™ = a)IIVug Ve
< & ||V§"+1||2+CV_1HV(U“1—U- 2V 2
N C 2 un"rl n .
< Liweitie + Co et e

tn+1

e CAt? 1 n
68 = lve +1||2+T</Q (a7 [ (Vusderao)vus P

tn,+1

Vi CAt? 1 .
<GIVEE P+ SR g [ IV Panava e
tn

tn+1

v " CAt "
6*W€ U2+ T(/ IV |2dt) [ Vul T2
tn

(5.9) b (' uph &5 t) < IV IIVug Ve

< 64||V£”+1||2 + vV P Va1,

13
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b (7w EnT) < CIIVE?hllz SR el
< CIVEIZ Iz 1VERs

n 1 n n
(5.10) < C(ellVE »,lel2 + IVEE RIS R 1)
n n 1 n
C(el Ve IIP + (f5HVé}-,hII2 +51€51D

Cen
)+ e,

n v n
< (ZIVETIP + L Ive

(5.11) b* (U, ) < CIVUT IV Ve
< 64IIV &P+ Cr VORIV
(5.12) b* (U7, €55 ) < CIVUR Vg NIV el
v n — n
< G IVER 1P+ Co VTR PV -

The next term, b*(U}', T ;L;Lrl), is the key term in the error analysis. Note that
by skew symmetry and Lemma 1

b (UF, €8, €51 = 0H(UP, €8, — €141 ) =
(Un V§n+1 n _ ;2—1) _ §(V . U]n, ( n €n+l) '§n+1).
Using standard estimates for each additive term (with e = 1/(2A¢t) ) and an inverse
inequality gives
b (U7, &5, 871 < CIVURIINIVE T ST = & allie + CIV - URIIET - (€54 = €5
< CIIVUPINIVEINE S - ”h||1/2 + CIIV-UFINVE R NE R = & nllaye
< CIIVU"HHVé“”“HHén+1 — & hlly2 < CIVUPIIVES IR — €74l

(5.13) lertt — enlP + ( VU"||2> v,

- 4At

For the next terms we have

b*(Uf,U?H —uf, &) < CIVURINIV (it = u) Vel
ZVETI + Cv VORIV (gt - a2

tn+1

v n CAt n
< GIVEE IR+ VORI IVl )

(5.14) <&

Next, consider the pressure term. Since f}’?{l € V;, we have
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( n+1 V §n+1) (p;erl q;ﬁl,v §n+1)
(5.15) <|pi*t =g v - €50
v — 3 n
< Ve + or Tt pptt — g

The other terms, are bounded as

n+1 n n+1
;5 -1 n _"7 n
(thg ) <C||7J|HW§ ral
n+1
ot = B
(5.16) <C 1HJTtJH2+ V& P
1 e v 1
<Oyt AT L nt1)12
<oz [ medtl? + GIVER
tn+1

¢ :
< . 7 n+1|2 )
<ol el @t Ve

(5.17) (Vi Ve < VIIW?“IIIIV&"“II
< OVl 1P + o5 \|V§"+1\|2 :

Finally,
u’?“ —um
Intp(u} ial Jn;:l) (’Tt”fuj,t(t”“),iﬁl)
n+l _ u?
J n+1 n+1
< Oll=—%7— — we @ OIIVER il
n+1 n
L n+1 2 C uj _uj _ n+1y(2
(5.18) < Zwgir S )

v " CAt
< ZIVETE+ S [ sl

tn

Combining, we now have the following inequality:
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n+1(|2 ]' n
S Gl - Sl

i *IIE”Jrl =&l + (IIVS"“IIQ* IVE;nl?)

v n n
+(g - CTHVUj Ve TP
tn+1

CAt .
—(/tn IV ) [V

< CvH [ Vu PR +

(5.19) Cv=H [V 2| Vu ”“H2+*Ilé}”hll2+0 “UIVUR PV
Cv=HIVUR (Vg ||

CAt i . N
+ 2wy </ [V a[2dt) + Co= it — g2

c
+Tt/

tn+1

. CAt
ImalPdt + O+ S2 [ sl
tTL

By the timestep condition 4 — C%HVU}LHz > Cv > 0. Take the sum of (5.19)
from n=1 to n=N-1 and multiply through by At

N—-1
vAt ¢ n "
SN + 22 el h||2+§j Lt —en 2+ onr Y v vert?
n=0
N—-1
1 vAt C ..
< SIERIE + = IVEAIE + At Y g7
n=0
N—-1
+at S {Cr |V o
n=0
oAttt
(20) / [Vugall? de) [T 2 + Co [ O |2Vl
Co VU |V |2 + Cut [V UT |29 |2
CAt n tn+1 — i
+ v </ Vsl 2dt) + CoYp T — g2
c M oAt [
g [ el + oA+ S [ gl
V t7l

Applying interpolation inequalities gives
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N-1
*Iléj P+ Z || gt =&+ HVSJ MllP+CALY v Ve
n=0
N-1
VAL C
*H h||2+7|\V Dall? Ay L Tall?
n=0
h2]~c )
(5.21) +07|||Vuj||| ol 113 41 +ott IHVUJIII olllVuglllz o
h2k h2k+
+O0—5 113,641 + O |||u3|||2 ka1 T ChAL[Vug ][
h25+2 2k+2
+C 1251113, 41 el

CAt2
+CvhF||uy| ||%,k+1 +—

The next step will be the application of the discrete Gronwall inequality (Girault
and Raviart [16], p. 176).

N-1
¢ n vAt n
*||§ ll? + Z || =P+ — IVE NP+ At v vert”?
n=0
C’NAt v At
< exp( ){*II h||2+7||V h|\2+07H|Vug|||
At2 k
+07|HWJIII oll +C |||UJ|||2 k+1
h2k+1
.22 —_—
(5.22) +C Al
h23+2 h2k+2
+C H|PJ|||2 st1 +C——
C’At2

+th2'“IIIUjIII§,k+1 + Tlllug‘,ttlﬂg,O} :

Recall that e} = 07 +£7'),. Use the triangle inequality on the error equation to split
the error termb into termb of nj and {7,

N-1
||€NH2 + Z o HV NP+ caty v|vert?
n=0
1 N-1
(5.23) < Sli&; ol + Z *Ilé"f — &l + IIVSJ P+ CAL Y v[vet?
n=0
N-1
*H H%+ Z H P =Rl LNIIV ll?+CALY vVt
n; n;t = m; g 1V n; :
n=0

Applying inequality (5.21), using the previous bounds for 7}’ terms,and absorbing
constants into a new constant C', we have Theorem 2. (]
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6. NUMERICAL EXPERIMENTS

We present numerical experiments of the algorithm (BEFE-Ensemble). Our
initial tests are simple with only p = 2 ensemble members verifying accuracy on
an academic problem and the various stability conditions on a more interesting
one. For the first test, using a perturbation of the Green-Taylor vortex, [17], [18],
that leads to perturbed initial conditions and boundary conditions, we confirm
the predicted convergence rates. Next we study a rotating flow involving offset
cylinders. Adapting the timestep we show that stability is preserved, as predicted
and measured by energy, enstrophy, and aggregate angular momentum. As the
Reynolds number is increased, the rate of separation of nearby trajectories in the
continuous problem is expected to increase, leading to a decrease in At under (1.3).
This is indeed observed. We use FreeFEM++ [19], with Taylor-Hood elements
(continuous piecewise quadratic polynomials for the velocity and continuous linear
polynomials for the pressure) in all tests.

6.1. Convergence Experiment. The Green-Taylor vortex is a commonly used
problem for convergence rates, since the true solution is known, e.g. [20], [21], [22],
[23], [24]. In © = (0,1)?, the exact solution of the Green-Taylor vortex is

u(z,y,t) = — cos(wmx) sin(wwy)e‘m"z’r%ﬁ ,

v(x,y,t) = sin(wrz) cos(wﬂ-y)e—zwzwzt/f

1
p(z,y,t) = —Z(COS(2UJ7T£C) + cos(2w7ry))ef4“’2”2t/7 .
Given 7 = Re, this is a solution of the NSE consisting of an w xw array of oppositely
signed vortices that decay as ¢ — co. The initial condition is

u® = (= cos(wmz) sin(wmy), sin(wrz) cos(wmy))” .

We take w =1, 7 = Re = 100, T =1, h = 1/m and At¢/h = 1/10. Convergence
rates are calculated from the error at two successive values of & in the usual manner
by postulating e(h) = Ch” and solving for 3 via 8 = In(e(h1)/e(hz2))/In(hy/h2).
The boundary condition on the problem is taken to be inhomogeneous Dirichlet:
Up = Utrye, Oon 0L

Generation of the initial conditions. The generation of ensemble members is
necessarily dependent on the application and the question asked. In the first test, we
consider an ensemble of two members w1, us, which are the solutions corresponding
to two different initial conditions u) = (1 + €1)u’, u§ = (1 + e2)u’ respectively.
This simple choice implies u1, us have a closed form w1 o = (14 €1,2)Uegqact SO €rrors
can be calculated. Here ¢; = 1073, e = —1073 are small perturbations on the
initial condition u°. Denote uegpact = (u(x,y,t),v(u,y,t))T and pegact = p(x,y,1).
Adjusting body forces and boundary conditions for each ensemble member, we have
Uy = (1 + el)uewacta p1 = (1 + 61)2pezact7 U = (1 + 62)ueacact7 b2 = (1 + 62)2pewacta
see [25] for explanations. From the tables we can see the convergence rate for u;
and wg is first order as predicted. ugq,. is expected to converge to 0.5 * (u1 + ug),
which in this test is equal to Uezqet-
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m ||U1 — ul,}LH(X)’o rate ||VU1 — Vu17h,||270 rate
3.27 8.45557-107° | - 2.41940- 1073 -
(2)2.27 | 2.26251-1076 | 3.2515 | 9.21029-10~* | 2.3819
(%)3 227 | 1.09082-1076 | 1.7993 | 3.65861-10~* | 2.2770
(g)
(3)

4.27| 6.90354-1077 | 1.1283 | 1.56884-10"% | 2.0883
5.27| 4.57036-107 | 1.0172 | 6.85081-105 2.0435
TABLE 1. Errors and convergence rates for the first ensemble member

m llue — ug.pllcoo | rate | ||Vus — Vugpll2,0 | rate
(327 | 842864-10° | - 241223103 -
(3)2 .27 | 2.25806 - 1076 | 3.2484 0.18647 - 10~4 2.3810
(3)3 .27 | 1.09000-107% | 1.7963 3.65017 - 10~4 2.2763
(3)4 .27 | 6.89994-107 | 1.1277 1.56547 - 10~* 2.0879
(g)5 .27 | 4.56809-10"7 | 1.0171 6.83669 - 10~° 2.0433

TABLE 2. Errors and convergence rates for the second ensemble member

m Hue:cact — uave,h”oo,o rate ||vuczact - vuave,h”Q,O rate
(%) - 27 8.44211-10°° - 2.41582 - 1073 -
(g)2 - 27 2.26028 - 10~° 3.2500 9.19838 - 10~* 2.3815
(g)3 - 27 1.09041 - 106 1.7978 3.65439 - 10~* 2.2766
(§)4 - 27 6.90174 - 1077 1.1280 1.567153527 - 10~4 2.0881
(3)°-27 4.56923 - 1077 1.0172 6.84375 - 10~° 2.0434
TABLE 3. Errors and convergence rates for the average of ensemble members

m [Vp1 — Vpisll2,0 | Tate | [[Vp2 — Vpapllao | rate
)27 | 593247102 = 5.91504 - 102 =
(§)2 27 3.97196 - 102 0.9894 .394309 - 102 1.0002
(3)d - 27 2.64583 - 1072 1.0020 2.59944 - 102 1.0276
(§)4 - 27 1.81013 - 102 0.9362 1.73880 - 102 0.9917
(%)5 - 27 1.26636 - 10~2 0.8811 1.15926 - 102 0.9999

TABLE 4. Errors and convergence rates for pressure

6.2. Stability Verification. We test the timestep condition for stability of our
algorithm on a problem of flow between two offset circles, motivated by the classic
problem of flow between rotating cylinders. The domain is a disk with a smaller off
center obstacle inside. Let 1 = 1, r9 = 0.1, ¢ = (¢1,¢2) = (%,O), then the domain
is given by
Q= {(,y) : 2’ +y* <1} and (z —e1)? + (y — c2)* 2 73}
The flow is driven by a counterclockwise rotational body force
fla,y,t) = (~dy* (1 2® — %) dax (1 - 2® — )"
with no-slip boundary conditions suppressed on both circles. Note that the ro-

tational force f = 0 at the outer circle so most of the interesting structures are
expected to be due to the interaction of the flow with the inner circle. The flow
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rotates about (0, 0) and interacts with the immersed circle (z —c;)? 4 (y —c2)? < r3
which induces a von Kdrmdn vortex street. This vortex street rotates and itself
re-interacts with the immersed circle, creating more complex structures. The mesh
is parameterized by the number of mesh points (n=40) around the outer circle and
the mesh points (m=10) around the immersed circle, and extended to all of Q as
a Delaunay mesh. As Re increases, this flow will be underresolved. Thus we give
tests of stability but neither expect nor test accuracy.

Generation of the initial conditions. In the second test, we generate perturba-
tions of the initial conditions that are incompressible and satisfy no-slip boundary
conditions by solving steady Stokes problem on the same geometry with body forces
perturbed. Let

fi(z,y,t) = f(2,y,t) + €1 * (sin(3mx)sin(3my), cos(3mx)cos(3my)) 7T,

fa(z,y,t) = f(z,y,t) + € * (sin(3nz)sin(3ny), cos(3mx)cos(3my)) 7,
where €; = 1073, ¢ = —1073. In this way, we generate u?,j = 1,2, satisfying
the no-slip condition. The solutions of the steady Stokes problem corresponding to
these two body forces are our perturbed initial conditions, which are denoted by
u? and u.

We solve Navier-Stokes equations using our algorithm with these two initial
conditions, which gives us uy, ug, and uq,.. We also solve the steady Stokes problem
using f(z,y,t) and get the initial condition uJ to do a comparison. The solution of
NSE with u is denoted by ug (marked as ‘no perturbation’ in the figures).

Test 1: Taking Re = 200, we give plots over 0 < ¢ < 10 of the following quantities:

|Angular Momentum| = | / T x U d|
Q
1 112
Enstrophy = §V||V X |

1
Energy =  ull?
To ensure the algorithm is stable, we first cut At to enforce

At )
(6.1) ClV@i= <un >"|F <1, (G=1,-p)
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In practise, the constant C can be determined by a few pre-computations. In our
test, we cut At to enforce the condition

1200
Re’
Once this condition is violated, we update the time step with dt"e” = dt°4/2
and keep doing this until the condition is satisfied again. Note that in this first
test we cut At but do not increase At. Figure 1-3 show that the condition (6.2)
is, as predicted, sufficient for stability of our algorithm for Re = 200. Figure 4
shows a comparison of time step evolution with respect to 3d condition (6.2) and
2d condition (2d C1) with the same constant C' = Tlo()' Figure 5 shows snapshots
of the flow, which is complex (some complexity from the flow and some from the
underresolved mesh) and seems to be pulsating. Figure 6 shows snapshots of the
contours (|Vor|/|Vor|.mazx > 0.1) of vorticity.

(6.2) THV(UM— <up >")|P < (j=1,2)

epsilon1= 0.001, epsilon2- —0.001, dt(0)=0.05, Re-200
T T T

4
1l 4

L4

Anguiar Momentum

A

@
T
I

4
oA L —————e e\

FIGURE 1. Stability: Angular Momentum, v = 1,/200

epsilon1= 0,001, epsilon2= —0.001, d1(0)=0.05, Re=200
T T

1af

12

10

FIGURE 2. Stability: Energy with v = 1/200

Test 2: Taking Re = 800, we test the 2d condition (2d C1).
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epsilon1- 0.001, epsilon2- —0.001, dt(0)-0.05, Re-200
T T

I —

1000} |

P

Enstophy

5.

FIGURE 3. Stability: Enstrophy, v = 1/200

epsilon1= 0.001, epsilon2= —0.001, d(0)=0.05, Re=200

0.04f

time sep
°
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T

o021

001l

FIGURE 4. Timestep evolution, v = 1/200

Case 1: Timestep halving only.

1200
(AT (— < > < =5
Figure 10 shows that as Re increases, At decreases.
Case 2: Timestep halving and doubling.
1200
(AT~ < wn > < =5
1200
and lin(h)| ALV (u} ), — < up >™)|]> > 0.5 * e

7. CONCLUSIONS

The need for ensemble calculations arises in calculation of sensitivities by differ-
ences [4], uncertainty quantification [2], stochastic NSE simulations [26], generation
of bred vectors and their use in improving forecasting skill, Kalney [1]. The most
efficient way to calculate such an ensemble will vary widely depending on the ap-
plication, flow, computational resources and code used. This report has presented
and analyzed an algorithm for computation of an ensemble of solutions such that
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FIGURE 5. Velocity, v = 1/200

each step requires the solution of one linear system with multiple right hand sides.
Stability requires a timestep condition that can easily be imposed step by step.
Experimental verification of stability under the condition is given.
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lar Momentum, v = 1/800
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epsilon1= 0.001, epsilon2- —0.001, di(0)=0.05, Re-800
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FIGURE 14. 2d-condition(timestep halving and doubling): Energy,
v = 1/800

epsilon1= 0.001, epsilon2= —0.001. di(0)=0.05, Re=800
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FIGURE 15. 2d-condition(timestep halving and doubling): Enstro-
phy, v = 1/800
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epsiont 0001, epslon2= 0001, 0005, Re<bl0 s epsont=0001,epsian2= 0001, d0)=0.05,Re<800
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FIGURE 16. Timestep Halving and Doubling: Timestep evolution,
v =1/800,

FIGURE 17. 2d-condition (timestep halving and doubling): Veloc-
ity, v = 1/800
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t=0 t=0.525
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FIGURE 18. 2d-condition (timestep halving and doubling): Con-
tours of Vorticity, v = 1/800



