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Abstract. This report presents an algorithm for computing an ensemble of

p solutions of the Navier-Stokes equations. The solutions are found, at each
timestep, by solving a linear system with one shared coefficient matrix and p

right hand sides, reducing both storage required and computational cost of the

solution process. The price that must be paid is a timestep condition involving
the timestep and the size of the fluctuations about the ensemble mean. Since

the method is a one step method and the timestep condition involves only

known quantities, it can be imposed to adapt the next timestep. The report
gives a comprehensive stability analysis, an error estimate and some first tests.

1. Introduction

There are many uncertainties inherent in numerical simulation of fluid flows.
Calculation of an ensemble of p solutions deals with these inherent uncertainties
to increase the window of predictability (by averaging), e.g., [1], [2], [3], to es-
timate solution sensitivities, e.g., [4], [5] and to estimate the uncertainty in the
result (by calculation of a PDF of the resulting solution), e.g., [6], [7]. Further,
the bred-vectors algorithm, [1], used to select a minimal set of ensemble members
capturing maximal spread of the resulting forecast itself involves repeated ensemble
flow simulations. One common way to calculate these ensembles is to treat them
as separate tasks, requiring computational effort and memory p-times the amount
required for one simulation. If available memory is sufficient to treat the tasks in
parallel, then the turnaround time is not increased, while if not then the turnaround
time is multiplied by p. This report explores a new approach ( (BEFE-Ensemble)
below) intermediate between these two extremes which requires a negligible storage
increase over one simulation (p solution vectors) and could have run time reduced
over p successive simulations, depending on the block solver used and the timestep
condition required for stability (Sections 3, 4). Thus the method is a new way to
rebalance “the competition between high-resolution, single deterministic forecasts
and ensembles” (Stensrud [8], p. 401). The motivation for the new method is
that for linearly implicit methods, the linear solve is a large contributor to overall
complexity and it is far cheaper in both storage and solution time to solve p linear
systems with the same coefficient matrix than with p different coefficient matrices.
For example, block generalized CG methods compute p residuals at each step but
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compensate in speed of convergence by producing approximations optimized over
a p× (#steps) dimensional Krylov subspace, e.g., [9], [10], [11], [12].

Accordingly, we consider a discretization of an ensemble of p solutions of the
NSE requiring solution of one linear system with the same coefficient matrix and p
RHS1. To begin, consider p Navier-Stokes equations with p slightly different initial
conditions and body forces, u0

j , fj , on a bounded domain subject to no slip boundary
conditions, for j = 1, ..., p:

uj,t + uj · ∇uj − ν4uj +∇pj = fj(x, t), in Ω,(1.1)

∇ · uj = 0, in Ω,

uj = 0, on ∂Ω,

uj(x, 0) = u0
j (x), in Ω.

We denote the ensemble mean by

< u >n:=
1

p

p∑
j=1

unj .

To present the idea, suppress the spacial discretization. Using an implicit-explicit
time discretization and keeping the resulting coefficient matrix independent of the
ensemble member, leads to the method:

un+1
j − unj

∆t
+ < u >n ·∇un+1

j + (unj− < u >n) · ∇unj

+∇pn+1
j − ν∆un+1

j = fn+1
j ,(BEFE-Ensemble)

∇ · un+1
j = 0.

Since the resulting coefficient matrix multiplying each un+1
j is independent of j,

(ensemble number), advancing one step we solve one linear system with p RHS.
Naturally, if the number of ensemble members is large enough, it can be subdivided
into p member sub-ensembles, balancing memory, communication and computa-
tions, and (BEFE-Ensemble) applied to each. Further, the choice of the ensemble
data u0

j and fj is application dependent.
The ensemble mean equation. Taking the ensemble mean of (BEFE-Ensemble),

< u >n satisfies

< u >n+1 − < u >n

∆t
+ < u >n ·∇ < u >n+1 +∇ < p >n+1 −ν∆ < u >n+1

+[< u · ∇u >n − < u >n ∇ < u >n] =< f >n+1 , and(1.2)

∇· < u >n+1= 0,

which is a discretized variant on the usual ensemble averaged NSE.
Timestep conditions. Since (BEFE-Ensemble) involves an explicit discretiza-

tion of a stretching term, a timestep restriction is necessary for long time, nonlinear
stability. With an FEM spacial discretization with mesh size h, we prove in Section
3 that in both 2d and 3d (BEFE-Ensemble) is stable under

(1.3) C
∆t

νh
‖∇(unj,h− < uh >

n)‖2 ≤ 1.

1One easy method to do this is simply to lag the nonlinear terms and pay the price in the
associated and severe Re dependent timestep restriction.
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Thus, as long as the deviation of each ensemble member from the ensemble mean at
each time step is not too big, the method is stable. When the deviation increases,
the timestep must decrease according to (1.3). In Section 4 we give improvements
of this condition. For example, in 2d we prove stability under

Cln(1/h)∆t

ν
‖∇(unj,h− < uh >

n)‖2 ≤ 1 .

We also give a condition valid for locally refined meshes, useful in cases when local
mesh widths are cut to balance locally large gradients.

In Section 5, we give an error analysis in the error in the individual ensemble
member using finite element methods for spacial discretization. Analysis of the
error in a PDF constructed from the approximations to the individual member’s
discrete approximation is an important open problem. Numerical tests confirming
our theory are presented in Section 6.

2. Notation and preliminaries

Let Ω be an open, regular domain in Rd(d = 2 or 3). The L2(Ω) norm and the
inner product are ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω)

norms are ‖ ·‖Lp and ‖ ·‖Wk
p

respectively. Hk(Ω) is the Sobolev space W k
2 (Ω), with

norm ‖ · ‖k. For functions v(x, t) defined on (0, T ), we define (1 ≤ m <∞)

‖v‖∞,k := EssSup[0,T ]‖v(t, ·)‖k, and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖mk dt

)1/m

.

The space H−k(Ω) is the dual space of bounded linear functions on Hk
0 (Ω). A

norm for H−1(Ω) is given by

‖f‖−1 = sup
06=v∈H1

0 (Ω)

(f, v)

‖∇v‖
.

We base our analysis on the finite element method (FEM) for the spacial dis-
cretization. The results also extend to many other variational methods. Let X be
the velocity space and Q be the pressure space:

X := (H1
0 (Ω))d, Q := L2

0(Ω).

For v ∈ X the usual H1/2(Ω) norm satisfies the interpolation inequality

‖v‖1/2 ≤ C
√
‖v‖‖∇v‖.

The space of divergence free functions is

V := {v ∈ X : (∇ · v, q) = 0 , ∀q ∈ Q}.
The norm on V ∗ (the dual of V ) is defined as

‖f‖∗ = sup
06=v∈V

(f, v)

‖∇v‖
.

A weak formulation of (1.1) is: Find uj : [0, T ] → X, pj : [0, T ] → Q for a.e.
t ∈ (0, T ] satisfying, for j = 1, ..., p:

(uj,t, v) + (uj · ∇uj , v) + ν(∇uj ,∇v)− (pj ,∇ · v) = (fj , v) , ∀v ∈ X
uj(x, 0) = u0

j (x) in X and (∇ · uj , q) = 0, ∀q ∈ Q.
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We denote conforming velocity, pressure finite element spaces based on an edge
to edge triangulation of Ω (with maximum triangle diameter h) by

Xh ⊂ X , Qh ⊂ Q.

We assume that Xh and Qh satisfy the usual discrete inf-sup condition. Taylor-
Hood elements, discussed in [13], [14], are one commonly used choice of velocity-
pressure finite element spaces. The discretely divergence free subspace of Xh is

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 , ∀qh ∈ Qh}.

We assume the mesh and finite element spaces satisfy the following standard in-
equalities (typical for locally quasi-uniform meshes and standard FEM spaces, see,
e.g., [13]): for all vh ∈ Xh

h‖∇vh‖ ≤ C(inv)‖vh‖,(Inverse Ineq)

‖vh‖∞ ≤ C| lnh|1/2‖∇vh‖, in dimension d = 2.(Discrete Sobolev)

Define the usual explicitly skew symmetric trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

b∗(u, v, w) satisfies the bound

b∗(u, v, w) ≤ C‖u‖ 1
2
‖∇v‖‖∇w‖, for all u, v, w ∈ X.

Lemma 1. For any uh, vh, wh ∈ Xh,

b∗(uh, vh, wh) =

∫
Ω

uh · ∇vh · wh dx+
1

2

∫
Ω

(∇ · uh)(vh · wh) dx.

Proof.

b∗(uh, vh, wh) :=
1

2
(uh · ∇vh, wh)− 1

2
(uh · ∇wh, vh).

Integrating by parts the second term and using uh|∂Ω = 0:

−(uh · ∇wh, vh) = (uh · ∇vh, wh) + (∇ · uh, vh · wh).

�

The fully discrete approximation we study of (1.1) is: Given unj,h, find un+1
j,h ∈ Xh,

pn+1
j,h ∈ Qh satisfying

(
un+1
j,h − unj,h

∆t
, vh) + b∗(< uh >

n, un+1
j,h , vh) + b∗(unj,h− < uh >

n, unj,h, vh)

−(pn+1
j,h ,∇ · vh) + ν(∇un+1

j,h ,∇vh) = (fn+1
j , vh), ∀vh ∈ Xh,(2.1)

(∇ · un+1
j,h , qh) = 0, ∀qh ∈ Qh.

C represents a positive constant independent of ν, the solution u, the time step ∆t
and the mesh width h. Its value may vary from situation to situation.
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3. Stability of the Ensemble Method

We begin by proving unconditional, nonlinear, long time stability of (2.1) under
the first timestep condition:

(3.1) C
∆t

νh
‖∇(unj,h− < uh >

n)‖2 ≤ 1, j = 1, · · ·, p .

Since (3.1) is based on known quantities and (2.1) is a 1-step method, (3.1) can be
applied to adapt 4t at every timestep to compute un+1

j stably. Improvements of

(3.1) in special cases are developed in Section 4.

Theorem 1 (Stability of BEFE-Ensemble). Consider the method (2.1). Suppose
the condition (3.1) holds. Then, for any N ≥ 1

1

2
‖uNj,h‖2 +

1

4

N−1∑
n=0

‖un+1
j,h − u

n
j,h‖2 +

ν∆t

4
‖∇uNj,h‖2 +

ν∆t

4

N−1∑
n=0

‖∇un+1
j,h ‖

2

≤
N−1∑
n=0

∆t

2ν
‖fn+1
j ‖2∗ +

1

2
‖u0

j,h‖2 +
ν∆t

4
‖∇u0

j,h‖2, j = 1, ..., p .

Proof. Set vh = un+1
j,h in (2.1). This gives:

1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h‖2 +

1

2
‖un+1

j,h − u
n
j,h‖2(3.2)

+∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h ) + ν∆t‖∇un+1

j,h ‖
2 = ∆t(fn+1

j , un+1
j,h ) .

Applying Young’s inequality to the right hand side gives

1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h‖2 +

1

2
‖un+1

j,h − u
n
j,h‖2

+∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h − u

n
j,h) + ν∆t‖∇un+1

j,h ‖
2(3.3)

≤ ν∆t

2
‖∇un+1

j,h ‖
2 +

∆t

2ν
‖fn+1
j ‖2∗ .

Next, we bound the trilinear term using the interpolation and inverse inequalities,
as well as Lemma 1.

−∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h − u

n
j,h)

≤ C∆t‖∇(unj,h− < uh >
n)‖‖∇unj,h‖‖un+1

j,h − u
n
j,h‖ 1

2

+
1

2
C∆t‖∇ · (unj,h− < uh >

n)‖‖unj,h · (un+1
j,h − u

n
j,h)‖

≤ C∆t‖∇(unj,h− < uh >
n)‖‖∇unj,h‖‖un+1

j,h − u
n
j,h‖ 1

2
(3.4)

+
1

2
C∆t‖∇ · (unj,h− < uh >

n)‖‖∇unj,h‖‖un+1
j,h − u

n
j,h‖

1
2 ‖∇(un+1

j,h − u
n
j,h)‖ 1

2

≤ C∆t‖∇(unj,h− < uh >
n)‖‖∇unj,h‖(Ch−

1
2 )‖un+1

j,h − u
n
j,h‖

+
1

2
C∆t‖∇(unj,h− < uh >

n)‖‖∇unj,h‖(Ch−
1
2 )‖un+1

j,h − u
n
j,h‖ .

Using Young’s inequality again gives
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−∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h − u

n
j,h)(3.5)

≤ C∆t2

h
‖∇(unj,h− < uh >

n)‖2‖∇unj,h‖2 +
1

4
‖un+1

j,h − u
n
j,h‖2 .

Combining like terms, (3.3) becomes

1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h||2 +

1

4
‖un+1

j,h − u
n
j,h‖2 +

ν∆t

2
‖∇un+1

j,h ‖
2(3.6)

≤ ∆t

2ν
‖fn+1
j ‖2∗ + C

∆t2

h
‖∇(unj,h− < uh >

n)‖2‖∇unj,h‖2 .

Adding and subtracting ν∆t
4 ‖∇u

n
j,h‖2 gives

1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h‖2 +

1

4
‖un+1

j,h − u
n
j,h‖2 +

ν∆t

4
{‖∇un+1

j,h ‖
2 − ‖∇unj,h‖2}(3.7)

+
ν∆t

4
{‖∇un+1

j,h ‖
2 + (1− C∆t

νh
‖∇(unj,h− < uh >

n)‖2)‖∇unj,h‖2} ≤
∆t

2ν
‖fn+1
j ‖2∗ .

With the restriction (3.1) assumed, we have

ν∆t

4
(1− C∆t

νh
‖∇(unj,h− < uh >

n)‖2)‖∇unj,h‖2 ≥ 0 .

Equation (3.7) reduces to

1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h‖2 +

1

4
‖un+1

j,h − u
n
j,h‖2(3.8)

+
ν∆t

4
{‖∇un+1

j,h ‖
2 − ‖∇unj,h‖2}+

ν∆t

4
‖∇un+1

j,h ‖
2 ≤ ∆t

2ν
‖fn+1
j ‖2∗ .

Summing up (3.8) from n = 0 to n = N − 1 results in

1

2
‖uNj,h‖2 +

1

4

N−1∑
n=0

‖un+1
j,h − u

n
j,h‖2 +

ν∆t

4
‖∇uNj,h‖2 +

ν∆t

4

N−1∑
n=0

‖∇un+1
j,h ‖

2

≤
N−1∑
n=0

∆t

2ν
‖fn+1
j ‖2∗ +

1

2
‖u0

j,h‖2 +
ν∆t

4
‖∇u0

j,h‖2 .(3.9)

This concludes the proof of stability. �

4. Sharpening the timestep condition

We have derived a global condition on the timestep that is sufficient for stability
in 2d and 3d. There are many important cases where this condition is improvable:

C|ln(h)|∆t
ν

‖∇(unj,h− < uh >
n)‖2 ≤ 1, 2d ,(2d C1)

C∆t

νh2
(‖unj,h− < uh >

n ‖2 + ‖∇ · (unj,h− < uh >
n)‖2) ≤ 1, 2d ,(2d C2)

C∆t

νh2
‖unj,h− < uh >

n ‖2L3 ≤ 1, 3d - no derivatives of fluctuations,(3d, L3)

max
e

C∆t

νhe
‖∇(unj,h− < uh >

n)‖2L2(e) ≤ 1, 3d-locally refined meshes.(Local)
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4.1. The case of 2d domains. In 2d, embedding estimates improve and this
improvement leads to an improvement of the timestep condition.

Theorem 2 (2d domains). Consider the method (2.1). Suppose the condition (2d
C1) or (2d C2) holds. Then, for any N ≥ 1

1

2
‖uNj,h‖2 +

1

4

N−1∑
n=0

‖un+1
j,h − u

n
j,h‖2 +

ν∆t

4
‖∇uNj,h‖2 +

ν∆t

4

N−1∑
n=0

‖∇un+1
j,h ‖

2

≤
N−1∑
n=0

∆t

2ν
‖fn+1
j ‖2∗ +

1

2
‖u0

j,h‖2 +
ν∆t

4
‖∇u0

j,h‖2, j = 1, ..., p .

Proof. In 2d we have

∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h − u

n
j,h)

≤ C∆t‖unj,h− < uh >
n ‖∞‖∇unj,h‖‖un+1

j,h − u
n
h‖

+
1

2
C∆t‖∇ · (unj,h− < uh >

n)‖‖unj,h‖∞‖un+1
j,h − u

n
h‖(4.1)

≤ C
√
|ln(h)|∆t‖∇(unj,h− < uh >

n)‖‖∇unj,h‖‖un+1
j,h − u

n
j,h‖

+
1

2
C
√
|ln(h)|∆t‖∇(unj,h− < uh >

n)‖‖∇unj,h‖‖un+1
j,h − u

n
j,h‖

≤ C|ln(h)|∆t2‖∇(unj,h− < uh >
n)‖2‖∇unj,h‖2 +

1

4
‖un+1

j,h − u
n
j,h‖2 ,

or,

∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h − u

n
j,h)

≤ C∆t‖unj,h− < uh >
n ‖∞‖∇unj,h‖‖un+1

j,h − u
n
j,h‖

+
1

2
C∆t‖∇ · (unj,h− < uh >

n)‖‖unj,h‖∞‖un+1
j,h − u

n
h‖

≤ Ch−1∆t‖unj,h− < uh >
n ‖‖∇unj,h‖‖un+1

j,h − u
n
j,h‖(4.2)

+
1

2
Ch−1∆t‖∇ · (unj,h− < uh >

n)‖‖∇unj,h‖‖un+1
j,h − u

n
j,h‖

≤ C∆t2

h2
(‖unj,h− < uh >

n ‖2 + ‖∇ · (unj,h− < uh >
n)‖2)‖∇unj,h‖2

+
1

4
‖un+1

j,h − u
n
j,h‖2 .

Thus,

1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h‖2 +

1

4
‖un+1

j,h − u
n
j,h‖2

+
ν∆t

4
{‖∇un+1

j,h ‖
2 − ‖∇unj,h‖2}+

ν∆t

4
{‖∇un+1

j,h ‖
2(4.3)

+(1− C|ln(h)|∆t
ν

‖∇(unj,h− < uh >
n)‖2)‖∇unj,h‖2} ≤

∆t

2ν
‖fn+1
j ‖2∗ ,

or,
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1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h‖2 +

1

4
‖un+1

j,h − u
n
j,h‖2

+
ν∆t

4
{‖∇un+1

j,h ‖
2 − ‖∇unj,h‖2}+

ν∆t

4
{‖∇un+1

j,h ‖
2(4.4)

+(1− C∆t

νh2
(‖unj,h− < uh >

n ‖2 + ‖∇ · (unj,h− < uh >
n)‖2))‖∇unj,h‖2}

≤ ∆t

2ν
‖fn+1
j ‖2∗ .

�

4.2. L3 estimate on the fluctuating part.

Theorem 3 (L3 estimate). Consider the method (2.1). Suppose the condition (3d,
L3 norms) holds. Then, for any N ≥ 1

1

2
‖uNj,h‖2 +

1

4

N−1∑
n=0

‖un+1
j,h − u

n
j,h‖2 +

ν∆t

4
‖∇uNj,h‖2 +

ν∆t

4

N−1∑
n=0

‖∇un+1
j,h ‖

2

≤
N−1∑
n=0

∆t

2ν
‖fn+1
j ‖2∗ +

1

2
‖u0

j,h‖2 +
ν∆t

4
‖∇u0

j,h‖2, j = 1, ..., p .

Proof. By Hölders′ inequality, we have

∆tb∗(unj,h− < unj,h >, u
n
j,h, u

n+1
j,h − u

n
j,h)

≤ 1

2
∆t‖(unj,h− < uh >

n)‖L3‖∇unj,h‖L2‖un+1
j,h − u

n
j,h‖L6(4.5)

+
1

2
∆t‖(unj,h− < uh >

n)‖L3‖unj,h‖L6‖∇(un+1
j,h − u

n
j,h)‖L2 .

Using the Sobolev embedding theorem and the inverse estimate on the (un+1
j,h −unj,h)

terms give

‖∇(un+1
j,h − u

n
j,h)‖L2 ≤ Ch−1‖un+1

j,h − u
n
j,h‖

‖un+1
j,h − u

n
j,h‖L6 ≤ Ch−1‖un+1

j,h − u
n
j,h‖ .

Thus, for any ε > 0,

∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h − u

n
j,h)

≤ Ch−1∆t‖(unj,h− < uh >
n)‖L3‖∇unj,h‖‖un+1

j,h − u
n
j,h‖(4.6)

≤ ε∆t

2
‖un+1

j,h − u
n
j,h‖2 +

C∆t

2εh2
‖(unj,h− < uh >

n)‖2L3‖∇unj,h‖2.

We use this estimate with ε = 1
2∆t−1. This gives

1

2
‖un+1

j,h ‖
2 − 1

2
‖unj,h‖2 +

1

4
‖un+1

j,h − u
n
j,h‖2 +

ν∆t

4
{‖∇un+1

j,h ‖
2 − ‖∇unj,h‖2}(4.7)

+
ν∆t

4
{‖∇un+1

j,h ‖
2 + (1− C∆t

νh2
‖unj,h− < uh >

n ‖2L3)‖∇unj,h‖2} ≤
∆t

2ν
‖fn+1
j ‖2∗ .

�
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4.3. Locally refined meshes: Often meshes are locally refined in regions of sharp
gradients. We show that a sufficient condition is that ∆t satisfies the following for
all elements e:

C∆t

νhe
‖∇(unj,h− < uh >

n)‖2L2(e) ≤ 1.

For the local condition we perform the same steps (locally on the element e) as in the
proof of Theorem 1 noting that (i) Hölders′ inequality can be applied locally (with
no dependence on diam(e) therefrom), (ii) the inverse inequality holds locally, with
he = diam(e) and constant depending only on the shape (he/ρe, ρe is the diameter
of the largest ball that can be inscribed in e) of the element, [15], and (iii) the
Sobolev embedding theorem holds locally with absolute constant independent of
he.

From the stability proof we observe the following.

Lemma 2. The conclusion of Theorem 1 (on stability) holds provided at every
timestep:

1

4
‖un+1

j,h − u
n
j,h‖2 +

ν∆t

4
‖∇unj,h‖2

+∆tb∗(unj,h− < uh >
n, unj,h, u

n+1
j,h − u

n
j,h) ≥ 0 .

The same conclusion holds if, on every element e,

∫
e

{1

4
|un+1
j,h − u

n
j,h|2 +

ν∆t

4
|∇unj,h|2

+∆t[(unj,h− < uh >
n) · ∇unj,h · (un+1

j,h − u
n
j,h)

+
1

2
(∇ · (unj,h− < uh >

n) · (unj,h · (un+1
j,h − u

n
j,h)))]}dx ≥ 0 .

Theorem 4 (Locally refined meshes). Consider the method (2.1). Suppose the
locally refined meshes condition holds. Then, for any N ≥ 1

1

2
‖uNj,h‖2 +

1

4

N−1∑
n=0

‖un+1
j,h − u

n
j,h‖2 +

ν∆t

4
‖∇uNj,h‖2 +

ν∆t

4

N−1∑
n=0

‖∇un+1
j,h ‖

2

≤
N−1∑
n=0

∆t

2ν
‖fn+1
j ‖2∗ +

1

2
‖u0

j,h‖2 +
ν∆t

4
‖∇u0

j,h‖2, j = 1, ..., p .
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Proof. We have

|
∫
e

∆t[(unj,h− < uh >
n) · ∇unj,h · (un+1

j,h − u
n
j,h)

+
1

2
(∇ · (unj,h− < uh >

n) · (unj,h · (un+1
j,h − u

n
j,h)))] dx|

≤ C∆t‖∇(unj,h− < uh >
n)‖L2(e)‖∇unj,h‖L2(e)

·‖un+1
j,h − u

n
j,h‖

1
2

L2(e)‖∇(un+1
j,h − u

n
j,h)‖

1
2

L2(e)

+
1

2
C∆t‖∇ · (unj,h− < uh >

n)‖L2(e)‖unj,h · (un+1
j,h − u

n
j,h)‖L2(e)(4.8)

≤ C∆t‖∇(unj,h− < uh >
n)‖L2(e)‖∇unj,h‖L2(e)

·‖un+1
j,h − u

n
j,h‖

1
2

L2(e)‖∇(un+1
j,h − u

n
j,h)‖

1
2

L2(e)

+
1

2
C∆t‖∇ · (unj,h− < uh >

n)‖L2(e)‖∇unj,h‖L2(e)

·‖un+1
j,h − u

n
j,h‖

1
2

L2(e)‖∇(un+1
j,h − u

n
j,h)‖

1
2

L2(e)

≤ C∆t‖∇(unj,h− < uh >
n)‖L2(e)‖∇unj,h‖L2(e)(Ch

− 1
2

e )‖un+1
j,h − u

n
j,h‖L2(e)

+
1

2
C∆t‖∇(unj,h− < uh >

n)‖L2(e)‖∇unj,h‖L2(e)(Ch
− 1

2
e )‖un+1

j,h − u
n
j,h‖L2(e) .

Using Young’s inequality gives

|
∫
e

∆t[(unj,h− < uh >
n) · ∇unj,h · (un+1

j,h − u
n
j,h)

+
1

2
(∇ · (unj,h− < uh >

n) · (unj,h · (un+1
j,h − u

n
j,h)))] dx|(4.9)

≤ C∆t2

he
‖∇(unj,h− < uh >

n)‖2L2(e)‖∇u
n
j,h‖2L2(e) +

1

4
‖un+1

j,h − u
n
j,h‖2L2(e) .

Thus, under the locally refined meshes condition,∫
e

{1

4
|un+1
j,h − u

n
j,h|2 +

ν∆t

4
|∇unj,h|2

+∆t[(unj,h− < uh >
n) · ∇unj,h · (un+1

j,h − u
n
j,h)

+(unj,h− < uh >
n) · ∇(un+1

j,h − u
n
j,h) · unj,h]}dx(4.10)

≥ ν∆t

4
(1− C∆t

νhe
‖∇(unj,h− < uh >

n)‖2L2(e))‖∇u
n
j,h‖2L2(e) ≥ 0.

Then, by Lemma 2, we obtain stability. �

5. Error Analysis for the Ensemble Method

In this section we give a detailed error analysis of the proposed method under
the 3d stability condition. This analysis can be elaborated to analogous results in
the cases of the other, sharpened stability conditions. Assume Xh and Qh satisfy
the usual (LBBh) condition, then the method is equivalent to: For n = 0, 1, ..., NT ,
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find un+1
j,h ∈ Vh such that

(
un+1
j,h − unj,h

∆t
, vh) + b∗(< uh >

n, un+1
j,h , vh) + b∗(unj,h− < uj,h >

n, unj,h, vh)(5.1)

+ν(∇un+1
j,h ,∇vh) = (fn+1

j , vh) , ∀vh ∈ Vh.

Let tn = n∆t, n = 0, 1, 2, ..., NT , and T := NT∆t. Denote unj = uj(t
n), j = 1, ..., p.

We introduce the following discrete norms:

‖|v|‖m,k := (

NT∑
n=0

||vn||mk ∆t)1/m, ‖|v|‖∞,k = max
0≤n≤NT

‖vn‖k.

To analyze the rate of convergence of the approximation we assume that the fol-
lowing regularity

uj ∈ L∞(0, T ;Hk+1(Ω)) ∩H1(0, T ;Hk+1(Ω)) ∩H2(0, T ;L2(Ω)),

pj ∈ L2(0, T ;Hs+1(Ω)), and fj ∈ L2(0, T ;L2(Ω)).

Let enj = unj − unj,h be the error between the true solution and the approximation,
then we have the following error estimates.

Theorem 5 (Convergence of (BEFE-Ensemble)). Consider the method (5.1). Sup-
pose that for any 0 ≤ n ≤ NT , the condition (1.3) holds

C
∆t

νh
‖∇(unj,h− < uh >

n)‖2 ≤ 1 , j = 1, ..., p.

Then, for any 0 ≤ tN ≤ T , there is a positive constant C independent of the mesh
width and timestep such that

1

2
‖eNj ‖2 +

N−1∑
n=0

1

4
‖en+1
j − enj ‖2 +

ν∆t

8
‖∇eNj ‖2 + C∆t

N−1∑
n=0

ν‖∇en+1
j ‖2

≤ exp(C T

ν2
){1

2
‖e0
j‖2 +

ν∆t

8
‖∇e0

j‖2 + C
h2k

ν
‖|∇uj |‖2∞,0‖|uj |‖22,k+1

+C
∆t2

ν
‖|∇uj |‖2∞,0‖|∇uj,t|‖22,0 + C

h2k

ν2
‖|uj |‖22,k+1

+C
h2k+1

∆t
‖|uj |‖22,k+1 + Ch∆t‖|∇uj,t|‖22,0(5.2)

+C
h2s+2

ν
‖|pj |‖22,s+1 + C

h2k+2

ν
‖|uj,t|‖22,k+1

+Cνh2k‖|uj |‖22,k+1 +
C∆t2

ν
‖|uj,tt|‖22,0} .

For k = 2, s = 1, Taylor-Hood elements, i.e. C0 piecewise quadratic velocity space
Xh and C0 piecewise linear pressure space Qh, we have the following estimate.

Corollary 1. Under the assumptions of Theorem 5, with e0
j taken to be 0, ∆t/h

fixed to be a constant C, (Xh, Qh) given by the Taylor-Hood approximation elements,
we have

1

2
‖eNj ‖2 +

N−1∑
n=0

1

4
‖en+1
j − enj ‖2 +

ν∆t

8
‖∇eNj ‖2 + C∆t

N−1∑
n=0

ν‖∇en+1
j ‖2 ≤ Ch2 .
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Proof. The true solutions of the NSE uj satisfy

(
un+1
j − unj

∆t
, vh) + b∗(un+1

j , un+1
j , vh) + ν(∇un+1

j ,∇vh)− (pn+1
j ,∇ · vh)(5.3)

= (fn+1
j , vh) + Intp(un+1

j ; vh) , for all vh ∈ Vh .

where Intp(un+1
j ; vh) is defined as

Intp(un+1
j ; vh) = (

un+1
j − unj

∆t
− uj,t(tn+1), vh) .

Let

enj = unj − unj,h = (unj − Ihunj ) + (Ihu
n
j − unj,h) = ηnj + ξnj,h , j = 1, ..., p .

where Ihu
n
j ∈ Vh is an interpolant of unj in Vh. Denote

Unj = unj,h− < uh >
n .

Subtracting (5.1) from (5.3) gives

(
ξn+1
j,h − ξnj,h

∆t
, vh) + ν(∇ξn+1

j,h ,∇vh) + b∗(un+1
j , un+1

j , vh)

−b∗(unj,h − Unj , un+1
j,h , vh)− b∗(Unj , unj,h, vh)− (pn+1

j ,∇ · vh)(5.4)

= −(
ηn+1
j − ηnj

∆t
, vh)− ν(∇ηn+1

j ,∇vh) + Intp(un+1
j ; vh) .

Set vh = ξn+1
j,h ∈ Vh , and rearrange the nonlinear terms, then we have

1

∆t
(
1

2
||ξn+1
j,h ||

2 − 1

2
||ξnj,h||2 +

1

2
‖ξn+1
j,h − ξ

n
j,h‖2) + ν||∇ξn+1

j,h ||
2

= −b∗(un+1
j , un+1

j , ξn+1
j,h ) + b∗(unj,h, u

n+1
j,h , ξn+1

j,h )

−b∗(Unj , un+1
j,h − u

n
j,h, ξ

n+1
j,h ) + (pn+1

j ,∇ · ξn+1
j,h )(5.5)

−(
ηn+1
j − ηnj

∆t
, ξn+1
j,h )− ν(∇ηn+1

j ,∇ξn+1
j,h ) + Intp(un+1

j ; ξn+1
j,h ) .

Now we bound the right hand side of the equation above. First, for the non-
linear term, adding and subtracting both b∗(un+1

j , un+1
j,h , ξn+1

j,h ) and b∗(Unj , u
n+1
j −
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unj , ξ
n+1
j,h ), we have

−b∗(un+1
j , un+1

j , ξn+1
j,h ) + b∗(unj,h, u

n+1
j,h , ξn+1

j,h )

+b∗(Unj , u
n+1
j,h − u

n
j,h, ξ

n+1
j,h )

= −b∗(un+1
j , en+1

j , ξn+1
j,h )− b∗(un+1

j − unj , un+1
j,h , ξn+1

j,h )

−b∗(enj , un+1
j,h , ξn+1

j,h ) + b∗(Unj , u
n+1
j,h − u

n
j,h, ξ

n+1
j,h )

= −b∗(un+1
j , ηn+1

j , ξn+1
j,h )− b∗(un+1

j − unj , un+1
j,h , ξn+1

j,h )

−b∗(ηnj , un+1
j,h , ξn+1

j,h )− b∗(ξnj,h, un+1
j,h , ξn+1

j,h )(5.6)

−b∗(Unj , en+1
j − enj , ξn+1

j,h ) + b∗(Unj , u
n+1
j − unj , ξn+1

j,h )

= −b∗(un+1
j , ηn+1

j , ξn+1
j,h )− b∗(un+1

j − unj , un+1
j,h , ξn+1

j,h )

−b∗(ηnj , un+1
j,h , ξn+1

j,h )− b∗(ξnj,h, un+1
j,h , ξn+1

j,h )

−b∗(Unj , ηn+1
j , ξn+1

j,h ) + b∗(Unj , η
n
j , ξ

n+1
j,h )

+b∗(Unj , ξ
n
j,h, ξ

n+1
j,h ) + b∗(Unj , u

n+1
j − unj , ξn+1

j,h ) .

We estimate the nonlinear terms as follows

b∗(un+1
j , ηn+1

j , ξn+1
j,h ) ≤ C‖∇un+1

j ‖‖∇ηn+1
j ‖‖∇ξn+1

j,h ‖(5.7)

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇un+1

j ‖2‖∇ηn+1
j ‖2 ,

b∗(un+1
j − unj , un+1

j,h , ξn+1
j,h ) ≤ C‖∇(un+1

j − unj )‖‖∇un+1
j,h ‖‖∇ξ

n+1
j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇(un+1

j − unj )‖2‖∇un+1
j,h ‖

2

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t2

ν
‖∇

un+1
j − unj

∆t
‖2‖∇un+1

j,h ‖
2

=
ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t2

ν
(

∫
Ω

(
1

∆t

∫ tn+1

tn
(∇uj,t)dt)2dΩ)‖∇un+1

j,h ‖
2(5.8)

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t2

ν
(

∫
Ω

(
1

∆t

∫ tn+1

tn
|∇uj,t|2dt)dΩ)‖∇un+1

j,h ‖
2

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t

ν
(

∫ tn+1

tn
‖∇uj,t‖2dt)‖∇un+1

j,h ‖
2 ,

b∗(ηnj , u
n+1
j,h , ξn+1

j,h ) ≤ C‖∇ηnj ‖‖∇un+1
j,h ‖‖∇ξ

n+1
j,h ‖(5.9)

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇ηnj ‖2‖∇un+1

j,h ‖
2,
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b∗(ξnj,h, u
n+1
j,h , ξn+1

j,h ) ≤ C‖∇ξnj,h‖
1
2 ‖ξnj,h‖

1
2 ‖∇un+1

j,h ‖‖∇ξ
n+1
j,h ‖

≤ C‖∇ξnj,h‖
1
2 ‖ξnj,h‖

1
2 ‖∇ξn+1

j,h ‖

≤ C(ε‖∇ξn+1
j,h ‖

2 +
1

ε
‖∇ξnj,h‖‖ξnj,h‖)(5.10)

≤ C(ε‖∇ξn+1
j,h ‖

2 +
1

ε
(δ‖∇ξnj,h‖2 +

1

δ
‖ξnj,h‖)

≤ (
ν

64
‖∇ξn+1

j,h ‖
2 +

ν

8
‖∇ξnj,h‖2) +

C

ν2
‖ξnj,h‖2,

b∗(Unj , η
n+1
j , ξn+1

j,h ) ≤ C‖∇Unj ‖‖∇ηn+1
j ‖‖∇ξn+1

j,h ‖(5.11)

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇Unj ‖2‖∇ηn+1

j ‖2 ,

b∗(Unj , η
n
j , ξ

n+1
j,h ) ≤ C‖∇Unj ‖‖∇ηnj ‖‖∇ξn+1

j,h ‖(5.12)

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇Unj ‖2‖∇ηnj ‖2 .

The next term, b∗(Unj , ξ
n
j,h, ξ

n+1
j,h ), is the key term in the error analysis. Note that

by skew symmetry and Lemma 1

b∗(Unj , ξ
n
j,h, ξ

n+1
j,h ) = b∗(Unj , ξ

n
j,h − ξn+1

j,h , ξn+1
j,h ) =

= −(Unj · ∇ξn+1
j,h , ξnj,h − ξn+1

j,h )− 1

2
(∇ · Unj ,

(
ξnj,h − ξn+1

j,h

)
· ξn+1
j,h ).

Using standard estimates for each additive term (with ε = 1/(24t) ) and an inverse
inequality gives

b∗(Unj , ξ
n
j,h, ξ

n+1
j,h ) ≤ C‖∇Unj ‖‖∇ξn+1

j,h ‖‖ξ
n+1
j,h − ξ

n
j,h‖1/2 + C‖∇ · Unj ‖‖ξn+1

j,h · (ξ
n+1
j,h − ξ

n
j,h)‖

≤ C‖∇Unj ‖‖∇ξn+1
j,h ‖‖ξ

n+1
j,h − ξ

n
j,h‖1/2 + C‖∇ · Unj ‖‖∇ξn+1

j,h ‖‖ξ
n+1
j,h − ξ

n
j,h‖1/2

≤ C‖∇Unj ‖‖∇ξn+1
j,h ‖‖ξ

n+1
j,h − ξ

n
j,h‖1/2 ≤ C‖∇Unj ‖‖∇ξn+1

j,h ‖h
−1/2‖ξn+1

j,h − ξ
n
j,h‖

≤ 1

44t
‖ξn+1
j,h − ξ

n
j,h‖2 +

(
C
4t
h
‖∇Unj ‖2

)
‖∇ξn+1

j,h ‖
2.(5.13)

For the next terms we have

b∗(Unj , u
n+1
j − unj , ξn+1

j,h ) ≤ C‖∇Unj ‖‖∇(un+1
j − unj )‖‖∇ξn+1

j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖∇Unj ‖2‖∇(un+1

j − unj )‖2(5.14)

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t

ν
‖∇Unj ‖2(

∫ tn+1

tn
‖∇uj,t‖2 dt) .

Next, consider the pressure term. Since ξn+1
j,h ∈ Vh we have
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(pn+1
j ,∇ · ξn+1

j,h ) = (pn+1
j − qn+1

j,h ,∇ · ξn+1
j,h )

≤ ‖pn+1
j − qn+1

j,h ‖‖∇ · ξ
n+1
j,h ‖(5.15)

≤ ν

64
‖∇ξn+1

j,h ‖
2 + Cν−1‖pn+1

j − qn+1
j,h ‖

2 .

The other terms, are bounded as

(
ηn+1
j − ηnj

∆t
, ξn+1
j,h ) ≤ C‖

ηn+1
j − ηnj

∆t
‖‖∇ξn+1

j,h ‖

≤ Cν−1‖
ηn+1
j − ηnj

∆t
‖2 +

ν

64
‖∇ξn+1

j,h ‖
2(5.16)

≤ Cν−1‖ 1

∆t

∫ tn+1

tn
ηj,t dt‖2 +

ν

64
‖∇ξn+1

j,h ‖
2

≤ C

ν∆t

∫ tn+1

tn
‖ηj,t‖2 dt+

ν

64
‖∇ξn+1

j,h ‖
2 .

ν(∇ηn+1
j ,∇ξn+1

j,h ) ≤ ν‖∇ηn+1
j ‖‖∇ξn+1

j,h ‖(5.17)

≤ Cν‖∇ηn+1
j ‖2 +

ν

64
‖∇ξn+1

j,h ‖
2 .

Finally,

Intp(un+1
j ; ξn+1

j,h ) = (
un+1
j − unj

∆t
− uj,t(tn+1), ξn+1

j,h )

≤ C‖
un+1
j − unj

∆t
− uj,t(tn+1)‖‖∇ξn+1

j,h ‖

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C

ν
‖
un+1
j − unj

∆t
− uj,t(tn+1)‖2(5.18)

≤ ν

64
‖∇ξn+1

j,h ‖
2 +

C∆t

ν

∫ tn+1

tn
‖uj,tt‖2dt .

Combining, we now have the following inequality:



16 NAN JIANG AND WILLIAM LAYTON

1

∆t
(
1

2
||ξn+1
j,h ||

2 − 1

2
||ξnj,h||2 +

1

4
‖ξn+1
j,h − ξ

n
j,h‖2) +

ν

8
(‖∇ξn+1

j,h ‖
2 − ‖∇ξnj,h‖2)

+(
ν

4
− C4t

h
‖∇Unj ‖2)‖∇ξn+1

j,h ‖
2

≤ Cν−1‖∇un+1
j ‖2‖∇ηn+1

j ‖2 +
C∆t

ν
(

∫ tn+1

tn
‖∇uj,t‖2dt)‖∇un+1

j,h ‖
2

+Cν−1‖∇ηnj ‖2‖∇un+1
j,h ‖

2 +
C

ν2
‖ξnj,h‖2 + Cν−1‖∇Unj ‖2‖∇ηn+1

j ‖2(5.19)

+Cν−1‖∇Unj ‖2‖∇ηnj ‖2

+
C∆t

ν
‖∇Unj ‖2(

∫ tn+1

tn
‖∇uj,t‖2dt) + Cν−1‖pn+1

j − qn+1
j,h ‖

2

+
C

ν∆t

∫ tn+1

tn
‖ηj,t‖2dt+ Cν‖∇ηn+1

j ‖2 +
C∆t

ν

∫ tn+1

tn
‖uj,tt‖2dt .

By the timestep condition ν
4 − C

4t
h ‖∇U

n
j ‖2 ≥ Cν > 0. Take the sum of (5.19)

from n=1 to n=N-1 and multiply through by ∆t

1

2
||ξNj,h||2 +

ν∆t

8
||∇ξNj,h||2 +

N−1∑
n=0

1

4
‖ξn+1
j,h − ξ

n
j,h‖2 + C∆t

N−1∑
n=0

ν‖∇ξn+1
j,h ‖

2

≤ 1

2
||ξ0
j,h||2 +

ν∆t

8
||∇ξ0

j,h||2 + ∆t

N−1∑
n=0

C

ν2
‖ξnj,h‖2

+∆t

N−1∑
n=0

{Cν−1‖∇un+1
j ‖2‖∇ηn+1

j ‖2

+
C∆t

ν
(

∫ tn+1

tn
‖∇uj,t‖2 dt)‖∇un+1

j ‖2 + Cν−1‖∇ηnj ‖2‖∇un+1
j,h ‖

2(5.20)

+Cν−1‖∇Unj ‖2‖∇ηn+1
j ‖2 + Cν−1‖∇Unj ‖2‖∇ηnj ‖2

+
C∆t

ν
‖∇Unj ‖2(

∫ tn+1

tn
‖∇uj,t‖2dt) + Cν−1‖pn+1

j − qn+1
j,h ‖

2

+
C

ν∆t

∫ tn+1

tn
‖ηj,t‖2dt+ Cν‖∇ηn+1

j ‖2 +
C∆t

ν

∫ tn+1

tn
‖uj,tt‖2 dt} .

Applying interpolation inequalities gives
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1

2
||ξNj,h||2 +

N−1∑
n=0

1

4
‖ξn+1
j,h − ξ

n
j,h‖2 +

ν∆t

8
||∇ξNj,h||2 + C∆t

N−1∑
n=0

ν‖∇ξn+1
j,h ‖

2

≤ 1

2
||ξ0
j,h||2 +

ν∆t

8
||∇ξ0

j,h||2 + ∆t

N−1∑
n=0

C

ν2
‖ξnj,h‖2

+C
h2k

ν
‖|∇uj |‖2∞,0‖|uj |‖22,k+1 + C

∆t2

ν
‖|∇uj |‖2∞,0‖|∇uj,t|‖22,0(5.21)

+C
h2k

ν2
‖|uj |‖22,k+1 + C

h2k+1

∆t
‖|uj |‖22,k+1 + Ch∆t‖|∇uj,t|‖22,0

+C
h2s+2

ν
‖|pj |‖22,s+1 + C

h2k+2

ν
‖|uj,t|‖22,k+1

+Cνh2k‖|uj |‖22,k+1 +
C∆t2

ν
‖|uj,tt|‖22,0 .

The next step will be the application of the discrete Gronwall inequality (Girault
and Raviart [16], p. 176).

1

2
‖ξNj,h‖2 +

N−1∑
n=0

1

4
‖ξn+1
j,h − ξ

n
j,h‖2 +

ν∆t

8
‖∇ξNj,h‖2 + C∆t

N−1∑
n=0

ν‖∇ξn+1
j,h ‖

2

≤ exp(CN∆t

ν2
){1

2
‖ξ0
j,h‖2 +

ν∆t

8
||∇ξ0

j,h||2 + C
h2k

ν
‖|∇uj |‖2∞,0‖|uj |‖22,k+1

+C
∆t2

ν
‖|∇uj |‖2∞,0‖|∇uj,t|‖22,0 + C

h2k

ν2
‖|uj |‖22,k+1

+C
h2k+1

∆t
‖|uj |‖22,k+1 + Ch∆t‖|∇uj,t|‖22,0(5.22)

+C
h2s+2

ν
‖|pj |‖22,s+1 + C

h2k+2

ν
‖|uj,t|‖22,k+1

+Cνh2k‖|uj |‖22,k+1 +
C∆t2

ν
‖|uj,tt|‖22,0} .

Recall that enj = ηnj +ξnj,h. Use the triangle inequality on the error equation to split
the error terms into terms of ηnj and ξnj,h.

1

2
‖eNj ‖2 +

N−1∑
n=0

1

4
‖en+1
j − enj ‖2 +

ν∆t

8
‖∇eNj ‖2 + C∆t

N−1∑
n=0

ν‖∇en+1
j ‖2

≤ 1

2
‖ξNj,h‖2 +

N−1∑
n=0

1

4
‖ξn+1
j,h − ξ

n
j,h‖2 +

ν∆t

8
‖∇ξNj,h‖2 + C∆t

N−1∑
n=0

ν‖∇ξn+1
j,h ‖

2(5.23)

+
1

2
‖ηNj ‖2 +

N−1∑
n=0

1

4
‖ηn+1
j − ηnj ‖2 +

ν∆t

8
‖∇ηNj,h‖2 + C∆t

N−1∑
n=0

ν‖∇ηn+1
j ‖2 .

Applying inequality (5.21), using the previous bounds for ηnj terms,and absorbing
constants into a new constant C, we have Theorem 2. �



18 NAN JIANG AND WILLIAM LAYTON

6. Numerical Experiments

We present numerical experiments of the algorithm (BEFE-Ensemble). Our
initial tests are simple with only p = 2 ensemble members verifying accuracy on
an academic problem and the various stability conditions on a more interesting
one. For the first test, using a perturbation of the Green-Taylor vortex, [17], [18],
that leads to perturbed initial conditions and boundary conditions, we confirm
the predicted convergence rates. Next we study a rotating flow involving offset
cylinders. Adapting the timestep we show that stability is preserved, as predicted
and measured by energy, enstrophy, and aggregate angular momentum. As the
Reynolds number is increased, the rate of separation of nearby trajectories in the
continuous problem is expected to increase, leading to a decrease in ∆t under (1.3).
This is indeed observed. We use FreeFEM++ [19], with Taylor-Hood elements
(continuous piecewise quadratic polynomials for the velocity and continuous linear
polynomials for the pressure) in all tests.

6.1. Convergence Experiment. The Green-Taylor vortex is a commonly used
problem for convergence rates, since the true solution is known, e.g. [20], [21], [22],
[23], [24]. In Ω = (0, 1)2, the exact solution of the Green-Taylor vortex is

u(x, y, t) = − cos(ωπx) sin(ωπy)e−2ω2π2t/τ ,

v(x, y, t) = sin(ωπx) cos(ωπy)e−2ω2π2t/τ ,

p(x, y, t) = −1

4
(cos(2ωπx) + cos(2ωπy))e−4ω2π2t/τ .

Given τ = Re, this is a solution of the NSE consisting of an ω×ω array of oppositely
signed vortices that decay as t→∞. The initial condition is

u0 = (− cos(ωπx) sin(ωπy), sin(ωπx) cos(ωπy))T .

We take ω = 1, τ = Re = 100, T = 1, h = 1/m and ∆t/h = 1/10. Convergence
rates are calculated from the error at two successive values of h in the usual manner
by postulating e(h) = Chβ and solving for β via β = ln(e(h1)/e(h2))/ ln(h1/h2).
The boundary condition on the problem is taken to be inhomogeneous Dirichlet:
uh = utrue, on ∂Ω.

Generation of the initial conditions. The generation of ensemble members is
necessarily dependent on the application and the question asked. In the first test, we
consider an ensemble of two members u1, u2, which are the solutions corresponding
to two different initial conditions u0

1 = (1 + ε1)u0, u0
2 = (1 + ε2)u0 respectively.

This simple choice implies u1, u2 have a closed form u1,2 = (1+ ε1,2)uexact so errors
can be calculated. Here ε1 = 10−3, ε2 = −10−3 are small perturbations on the
initial condition u0. Denote uexact = (u(x, y, t), v(u, y, t))T and pexact = p(x, y, t).
Adjusting body forces and boundary conditions for each ensemble member, we have
u1 = (1 + ε1)uexact, p1 = (1 + ε1)2pexact, u2 = (1 + ε2)uexact, p2 = (1 + ε2)2pexact,
see [25] for explanations. From the tables we can see the convergence rate for u1

and u2 is first order as predicted. uave is expected to converge to 0.5 ∗ (u1 + u2),
which in this test is equal to uexact.
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m ‖u1 − u1,h‖∞,0 rate ‖∇u1 −∇u1,h‖2,0 rate
3
2 · 27 8.45557 · 10−6 – 2.41940 · 10−3 –
( 3

2 )2 · 27 2.26251 · 10−6 3.2515 9.21029 · 10−4 2.3819
( 3

2 )3 · 27 1.09082 · 10−6 1.7993 3.65861 · 10−4 2.2770
( 3

2 )4 · 27 6.90354 · 10−7 1.1283 1.56884 · 10−4 2.0883
( 3

2 )5 · 27 4.57036 · 10−7 1.0172 6.85081 · 10−5 2.0435
Table 1. Errors and convergence rates for the first ensemble member

m ‖u2 − u2,h‖∞,0 rate ‖∇u2 −∇u2,h‖2,0 rate
( 3

2 ) · 27 8.42864 · 10−6 – 2.41223 · 10−3 –
( 3

2 )2 · 27 2.25806 · 10−6 3.2484 9.18647 · 10−4 2.3810
( 3

2 )3 · 27 1.09000 · 10−6 1.7963 3.65017 · 10−4 2.2763
( 3

2 )4 · 27 6.89994 · 10−7 1.1277 1.56547 · 10−4 2.0879
( 3

2 )5 · 27 4.56809 · 10−7 1.0171 6.83669 · 10−5 2.0433
Table 2. Errors and convergence rates for the second ensemble member

m ‖uexact − uave,h‖∞,0 rate ‖∇uexact −∇uave,h‖2,0 rate
( 3

2 ) · 27 8.44211 · 10−6 – 2.41582 · 10−3 –
( 3

2 )2 · 27 2.26028 · 10−6 3.2500 9.19838 · 10−4 2.3815
( 3

2 )3 · 27 1.09041 · 10−6 1.7978 3.65439 · 10−4 2.2766
( 3

2 )4 · 27 6.90174 · 10−7 1.1280 1.567153527 · 10−4 2.0881
( 3

2 )5 · 27 4.56923 · 10−7 1.0172 6.84375 · 10−5 2.0434
Table 3. Errors and convergence rates for the average of ensemble members

m ‖∇p1 −∇p1,h‖2,0 rate ‖∇p2 −∇p2,h‖2,0 rate
( 3

2 ) · 27 5.93247 · 10−2 – 5.91504 · 10−2 –
( 3

2 )2 · 27 3.97196 · 10−2 0.9894 .394309 · 10−2 1.0002
( 3

2 )3 · 27 2.64583 · 10−2 1.0020 2.59944 · 10−2 1.0276
( 3

2 )4 · 27 1.81013 · 10−2 0.9362 1.73880 · 10−2 0.9917
( 3

2 )5 · 27 1.26636 · 10−2 0.8811 1.15926 · 10−2 0.9999
Table 4. Errors and convergence rates for pressure

6.2. Stability Verification. We test the timestep condition for stability of our
algorithm on a problem of flow between two offset circles, motivated by the classic
problem of flow between rotating cylinders. The domain is a disk with a smaller off
center obstacle inside. Let r1 = 1, r2 = 0.1, c = (c1, c2) = ( 1

2 , 0), then the domain
is given by

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)2 + (y − c2)2 ≥ r2

2}.
The flow is driven by a counterclockwise rotational body force

f(x, y, t) = (−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T

with no-slip boundary conditions suppressed on both circles. Note that the ro-
tational force f ≡ 0 at the outer circle so most of the interesting structures are
expected to be due to the interaction of the flow with the inner circle. The flow
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rotates about (0, 0) and interacts with the immersed circle (x−c1)2 +(y−c2)2 ≤ r2
2

which induces a von Kármán vortex street. This vortex street rotates and itself
re-interacts with the immersed circle, creating more complex structures. The mesh
is parameterized by the number of mesh points (n=40) around the outer circle and
the mesh points (m=10) around the immersed circle, and extended to all of Ω as
a Delaunay mesh. As Re increases, this flow will be underresolved. Thus we give
tests of stability but neither expect nor test accuracy.
Generation of the initial conditions. In the second test, we generate perturba-
tions of the initial conditions that are incompressible and satisfy no-slip boundary
conditions by solving steady Stokes problem on the same geometry with body forces
perturbed. Let

f1(x, y, t) = f(x, y, t) + ε1 ∗ (sin(3πx)sin(3πy), cos(3πx)cos(3πy))T ,

f2(x, y, t) = f(x, y, t) + ε2 ∗ (sin(3πx)sin(3πy), cos(3πx)cos(3πy))T ,

where ε1 = 10−3, ε2 = −10−3. In this way, we generate u0
j , j = 1, 2, satisfying

the no-slip condition. The solutions of the steady Stokes problem corresponding to
these two body forces are our perturbed initial conditions, which are denoted by
u0

1 and u0
2.

We solve Navier-Stokes equations using our algorithm with these two initial
conditions, which gives us u1, u2, and uave. We also solve the steady Stokes problem
using f(x, y, t) and get the initial condition u0

0 to do a comparison. The solution of
NSE with u0

0 is denoted by u0 (marked as ‘no perturbation’ in the figures).
Test 1: Taking Re = 200, we give plots over 0 ≤ t ≤ 10 of the following quantities:

|Angular Momentum| = |
∫

Ω

~x× ~u d~x|

Enstrophy =
1

2
ν‖∇ × ~u‖2

Energy =
1

2
‖u‖2

To ensure the algorithm is stable, we first cut ∆t to enforce

(6.1) C
∆t

νh
||∇(unj,h− < uh >

n)||2 ≤ 1, (j = 1, · · ·, p)
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In practise, the constant C can be determined by a few pre-computations. In our
test, we cut ∆t to enforce the condition

(6.2)
∆t

h
||∇(unj,h− < uh >

n)||2 ≤ 1200

Re
, (j = 1, 2)

Once this condition is violated, we update the time step with dtnew = dtold/2
and keep doing this until the condition is satisfied again. Note that in this first
test we cut ∆t but do not increase ∆t. Figure 1-3 show that the condition (6.2)
is, as predicted, sufficient for stability of our algorithm for Re = 200. Figure 4
shows a comparison of time step evolution with respect to 3d condition (6.2) and
2d condition (2d C1) with the same constant C = 1

1200 . Figure 5 shows snapshots
of the flow, which is complex (some complexity from the flow and some from the
underresolved mesh) and seems to be pulsating. Figure 6 shows snapshots of the
contours (|V or|/|V or|.max > 0.1) of vorticity.
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Figure 1. Stability: Angular Momentum, ν = 1/200
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Figure 2. Stability: Energy with ν = 1/200

Test 2: Taking Re = 800, we test the 2d condition (2d C1).
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Figure 3. Stability: Enstrophy, ν = 1/200
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Figure 4. Timestep evolution, ν = 1/200

Case 1: Timestep halving only.

|ln(h)|∆t||∇(unj,h− < uh >
n)||2 ≤ 1200

Re
Figure 10 shows that as Re increases, ∆t decreases.
Case 2: Timestep halving and doubling.

|ln(h)|∆t||∇(unj,h− < uh >
n)||2 ≤ 1200

Re

and |ln(h)|∆t||∇(unj,h− < uh >
n)||2 ≥ 0.5 ∗ 1200

Re

7. Conclusions

The need for ensemble calculations arises in calculation of sensitivities by differ-
ences [4], uncertainty quantification [2], stochastic NSE simulations [26], generation
of bred vectors and their use in improving forecasting skill, Kalney [1]. The most
efficient way to calculate such an ensemble will vary widely depending on the ap-
plication, flow, computational resources and code used. This report has presented
and analyzed an algorithm for computation of an ensemble of solutions such that
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t=0 t=0.5

t=4.925 t=10.0

Figure 5. Velocity, ν = 1/200

each step requires the solution of one linear system with multiple right hand sides.
Stability requires a timestep condition that can easily be imposed step by step.
Experimental verification of stability under the condition is given.
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Figure 10. Timestep Halving: Timestep evolution (left), Zoom
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Figure 12. Contours of Vorticity (timestep halving), ν = 1/800
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Figure 13. 2d-condition (timestep halving and doubling): Angu-
lar Momentum, ν = 1/800
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Figure 14. 2d-condition(timestep halving and doubling): Energy,
ν = 1/800
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Figure 15. 2d-condition(timestep halving and doubling): Enstro-
phy, ν = 1/800
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Figure 16. Timestep Halving and Doubling: Timestep evolution,
ν = 1/800,
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Figure 17. 2d-condition (timestep halving and doubling): Veloc-
ity, ν = 1/800
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Figure 18. 2d-condition (timestep halving and doubling): Con-
tours of Vorticity, ν = 1/800


