The hippocampus is capable of rapidly learning incoming information, even if that information is only observed once. Further, this information can be replayed in a compressed format during Sharp Wave Ripples (SPW-R). We leveraged state-of-the-art techniques in training recurrent spiking networks to demonstrate how primarily interneuron networks can: 1) generate internal theta sequences to bind externally elicited spikes in the presence of septal inhibition, 2) compress learned spike sequences in the form of a SPW-R when septal inhibition is removed, 3) generate and refine gamma-assemblies during SPW-R mediated compression, and 4) regulate the inter-ripple-interval timing between SPW-R’s in ripple clusters. From the fast time scale of neurons to the slow time scale of behaviors, interneuron networks serve as the scaffolding for one-shot learning by replaying, refining, and regulating spike sequences.
704 Thackeray Hall