Research Areas

Graduate students in the Department of Mathematics will participate in many of these research areas. The faculty encourage graduate students to contact them to discuss their ideas.

Algebra, combinatorics, and geometry are areas of very active research at the University of Pittsburgh.
The research of the analysis group covers functional analysis, harmonic analysis, several complex variables, partial differential equations, and analysis on metric and Carnot-Caratheodory spaces.
The department is a leader in the analysis of systems of nonlinear differential equations that arise in modeling a variety of physical phenomena. They include problems in biology, chemistry, phase transitions, fluid flow, flame propagation, diffusion processes, and pattern formation in nonlinear stochastic partial differential equations.
This group has strengths in many areas of applied mathematics ranging from nonlinear dynamics to large scale computing. It focuses on training scientists in (i) the development of analytical and computational algorithms for solving complex spatio-temporal problems that arise in biology and (ii) applications of these and other methods to problems arising in neuroscience and inflammation.
The biological world stands as the next great frontier for mathematical modeling and analysis. This group studies complex systems and dynamics arising in various biological phenomena.
A rapidly growing area of mathematical finance is Quantitative Behavioral Finance. The high-tech boom and bust of the late 1990s followed by the housing and financial upheavals of 2008 have made a convincing case for the necessity of adopting broader assumptions in finance.
The diversity of this group is reflected in its research interests: numerical analysis of partial differential equations, adaptive methods for scientific computing, computational methods of fluid dynamics and turbulence, numerical solution of nonlinear problems arising from porous media flow and transport, optimal control, and simulation of stochastic reaction diffusion systems.
Research in analytic topology continues in the broad area of generalized metric spaces. This group studies relativity theory and differential geometry, with emphasis on twistor methods. As well as, geometric and topological aspects of quantum field theory, string theory, and M-theory.

Newsletter

Sign up to receive By the Numb3rs, the Department of Mathematics e-newsletter.

View past issues

Contact Us

The Dietrich School of
Arts and Sciences
301 Thackeray Hall
Pittsburgh, PA 15260
Phone: 412-624-8375
Fax: 412-624-8397
math@pitt.edu