Colloquia

Heat semigroup and BV functions

In abstract Dirichlet spaces, we present  a theory of Besov spaces which is based on the heat semigroup. This approach offers a new perspective on the class of bounded variation functions in settings including Riemannian manifolds, sub-Riemannian manifolds. In rough spaces like fractals it offers totally new research directions. The key assumption on the underlying space is a weak Bakry-Emery type curvature assumption.

The talk is based on joint works with Patricia Alonso-Ruiz, Li Chen, Luke Rogers, Nageswari Shanmugalingam and Alexander Teplyaev.

Can addition make things more convex?

If $A$ and $B$ are sets in ${\mathbb R}^n$, then
$$
A+B=\{a+b: a\in A, b\in B\}
$$
is the Minkowski sum of $A$ and $B$. It is not hard to see that if $A$ and $B$ are two convex sets then $A+B$ is also convex and $A+A=2A$, for a convex set $A$. Things become much less trivial if we would not assume that set $A$ is convex.  Indeed, in such a case $A+A$ is not necessary equal to $2A$. But there is a strong feeling that $2A$ become "more" convex than $A$.

Deformation of Alexander Maps

We discuss a dimension-free deformation theory for Alexander maps and its applications.

In 1920, J. W. Alexander proved that every closed orientable PL (piecewise linear) n-manifold can be triangulated so that any two neighboring n-simplices are mapped to 
the upper and the lower hemispheres of Sn, respectively. Such maps are called Alexander maps.   Rickman introduced a powerful 2-dimensional deformation method for Alexander maps, in his celebrated proof (1985) of  the sharpness of the Picard theorem in R3